

Model Checking Lab

Computer Science Department Sapienza University of Rome, Italy

Toni Mancini, Igor Melatti, **Enrico Tronci** Marco Esposito, Leonardo Picchiami

http://mclab.di.uniroma1.it

Sapienza University of Rome

- Founded in 1303
- The largest university in Europe
 - **115K** students
 - **7K** foreign students
 - **1K** incoming Erasmus students / year
- Steadily within top 3% world universities [Shangai Ranking]
- **250** Bachelor & Master Programmes
- **11** Faculties
- 63 Departments

Computer Science Dept. @ Sapienza

- **45** Faculty Members
- **23** Post-Doc Researchers
- 20 PhD Students
- Internationally active in most of main stream CS research areas.
- Organized in informal **research groups**.
- Research group involved in this project:

Model Checking Lab (MCLab) (http://mclab.di.uniroma1.it)

Model Checking Lab @ Sapienza

- Research group within the Computer Science Department
- 5 faculty members, 1 post-docs, 1 PhD students,
 1 research fellow, 10 graduate students
- Research focus: design and development of AI and Machine Learning-based software tools for simulation-driven verification, validation and synthesis of mission/safety-critical distributed intelligent systems.

Typical domains for MCLab activity:

- aerospace
- critical infrastructures
- transportation
- medicine
- smart grids

Safety/Mission Critical Intelligent Systems V&V

- Define properties to be verified.
- Model properties through KPI (Key Performance Indicators) computed during simulation.
- Provide evidence that *all possible plausible scenarios* (e.g., fault sequences, attacks, etc) have been adequately considered.
- Model environment using Markov Chains and show completeness and soundness.
- *Testing may change our SUD,* since intelligence often implies that system behavior changes in order to adapt to environment behavior.
- ► Use adversarial learning to challenge SUD.
- *High statistical confidence* values about correctness are typically required. This entails a huge number of simulation runs (easily many millions).
- Use Statistical Model Checking and scenario optimization to save on number of simulation runs.
- Amount of time needed for each simulation run.
- ▶ Use Surrogate Models and HPC to save on simulation time.

MCLab in Aerospace

EC FP7 Ulisse (4.8 M€)

Verification & Validation of mission planning and on-board procedures

ESA ITI Verifying Satellite Operational Procedures (150 k€)

Verification & Validation of ground segment satellite operational procedures

ESA ITT System & Software Functional Requirements Technique (200 k€)

Verification & Validation of system level design for satellite and avionics vehicles

POR FESR Aerospace and security - A system for hostile UAV detection in critical areas (340 k€). Optimal positioning of antenna relays for radiogoniometry

esa

European Space Agency

MCLab in Transportation

MIUR Tramp, Setram, Interception (3.5 M€)

Optimal management of intermodal transportation of dangerous goods, guaranteeing security standards

Safety verification of communication protocols and control policies for the control center

FILAS Sintesi (100 k€)

Sense and response system for critical resource management

Model Checking Lab

iiversità di Roma

MCLab in Critical Infrastructures

SAPP, IRRIIS, Safeguard, SafeTunnel, Icaro (10 M€)

Design and safety verification of control and communication systems for critical infrastructures

Ministry of Defense - TOD - Formal verification of a protocol for automatic compensation of line delays.

POR FESR Aerospace - Satellite Driven Fire Simulator (250 k€). Faster-than-real-time simulation based forecasting of fire propagation.

ENEL

MCLab in Smart Grids

EC FP7 SmartHG (3.5 M€)

Energy Demand Aware Open Services for Smart Grid Intelligent Automation

Coordinator: Enrico Tronci

Design and formal verification of hierarchical control policies for the Smart Grid

SmartHG benefits: optimisation of grid management, minimisation of energy cost and CO2 emissions

MCLab in Medicine

EC FP7 Paeon (2.5 M€)

Model Driven Computation of Treatments for Infertility Related Endocrinological Diseases

LUZERN

Computational models of human physiology (virtual physiological human).

Simulation-based verification and synthesis of personalized clinical treatments

UniversitätsSpita Zürich HOCHSCHULE

Hannover Medical School

Contacts

Toni Mancini, Igor Melatti, Enrico Tronci

Computer Science Department Sapienza University of Rome Via Salaria 113 00198 Rome, Italy

tmancini@di.uniroma1.it melatti@di.uniroma1.it **tronci@di.uniroma1.it** http://mclab.di.uniroma1.it

