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Machine Learning inference on the edge is becoming 
pervasive for several real-time tasks:

• Cameras: image classification / object detection
• Smart speakers: speech recognition, NLP
• Smart sensors: Anomaly detection, time-series 

forecasting
• ...

Need to enable efficient NN inference on 
power-constrained devices through:

→ Neural Processing Units Embedded in MCUs and SOCs

→ Dedicated compilation toolchains

Introduction

Compiler
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STMicroelectronics Experimental NPU

A low-power embedded CNN accelerator to implement a data-flow based inference 
engine. It is designed to be modular and parametric to address a wide spectrum of 

computational requirements and efficiency needs.

3IWES 2022 – 22/09/2022 DSE for ST Neural Compilation toolchain



STMicroelectronics Neural Toolchain

MCU + NPU

NN Model (ONNX)

Graph Optimization

NN Topology

Resource Allocation

Lowering & Scheduling

HW Description

CFG Graph

Runtime library

Optimization & code generation

Executable

To program this NPU, a dedicated compilation toolchain 
and low-level runtime library are in charge of:

• Optimizing the NN model

• Binding the NN nodes to the 
NPU's computational units

• Scheduling the operations' across 
several execution epochs

• Allocating the memory buffers

• Producing the final code

• Estimating runtime metrics:

• Execution latency (#cycles)

• Throughput

• Power consumption

• Memory footprint
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Convolutional layers mapping options

The Neural compiler can apply optimizations on the 
Convolutional layers, to use the NPU resources more 
efficiently. Some of these optimizationspasses are:

Kernelwise
decomposition

Decompose the layer in 𝑁
parallel convolutions,

each of which

computes 𝐾/𝑁 kernels

Channelwise
decomposition

Decompose the layer in 𝑀
parallel convolutions, each of

which computes 𝐶/𝑀
input channels, 

then accumulates the results

Channelwise
pipelining

Map the layer on a pipeline of
CAs, each of which computes
the convolution on 𝐶/𝐿
input channels and accumulat
es on the intermediate results.
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Optimal mapping and space cardinality

Objectives: Given a set of hardware configurations and a NN model:
find the best hardware configuration and the associated optimal mapping that 
minimizes a cost function (power consumption, latency, memory footprint).

Parameter Type Possible values

Number of Conv Accelerators Generic 1, 2, 4, 8

Split degree in Kernel-wise decomposition Layer-wise 1 (off), 2, 4

Split degree in Channel-wise decomposition Layer-wise 1 (off), 2, 4

Max length of ConvAccs pipeline Layer-wise 1, 2, 3, 4

Exhaustive search not possible for networks with multiple layers​:
• With 3 layers: # combinations > 400 000​
• With 9 layers: # combinations > 1016

Automatic Exploration techniques needed to:

• Find optimal configurations and/or the Pareto 
frontiers

• Explore tradeoffs when moving in the design space
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MOST Exploration framework

MOST (Multi-Objective System Optimizer) [5] is an 
open-source design space exploration tool developed 
at Politecnico di Milano.

It is an interactive program to explore a design space 
of configurations for a particular architecture for 
which an executable model exists 
(In our work: the Neural compiler).

This DSE framework is flexible and modular in terms of:
• target architecture
• system-level models and simulator
• optimization algorithms
• Design of experiments algorithms
• system-level metrics

[5] github.com/vzaccaria/most
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Exploration algorithms (1)

• Full search (baseline): Exhaustive search that finds the optimal solution in exponential
time (only for small networks)

• Search with one-fits-all-layers pruning: Prune the design space by considering only 
the configurations in which the layer-wise parameters are identical for all the layers

• MOSA (Multi-Objective Simulated Annealing) with Face-Centered Central Composite 
initialization: initially, a set of points is generated
including full factorial designs, center points, and
face-centered axial points. 
Starting from this initial set, the Simulated Annealing 
search [1] is performed for several epochs. 
In each epoch, new configurations are constructed by 
imposing a random displacement, and they are evaluated:

• They are accepted if they show an improvement;  

• Otherwise, they get randomly accepted or rejected according to a probability 
distribution with the acceptance probability decreasing in later epochs.

[1] K. I. Smith et al., “Dominance-based multiobjective simulated annealing,” IEEE TECV, vol. 12, no. 3, pp. 323–342, 2008.

[2] Picture from O. Ghasemalizadeh et al. “A Review of Optimization Techniques in Artificial Networks”, 
International Journal of Advanced Research, 2016

[2] 
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Exploration algorithms (2)

• NSGA-II (Non-Dominated Sorting Genetic Algorithm II [3]) with 
random initialization:
at the beginning, a parent population is generated 
randomly. Each point of the current population is 
evaluated and gets assigned its non-domination level, 
which serves as fitness function. 
The lowest-levels fronts (sets of points) are selected to build the 
next generation through recombination, mutation and elitist 
cloning. The last front is partitioned based on crowding distance.

• Greedy Exploration: first, an initial set of points is generated 
randomly or through the Face-Centered Central Composite 
design of experiments. Then, the algorithm starts to greedily 
move within the design space through neighborhood points 
trying to minimize a single objective, and it stops once a local 
minimum is found.

[3] K. Deb et al., “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE TEVC, vol. 6, no. 2, pp. 182–197, Apr. 2002

9IWES 2022 – 22/09/2022 DSE for ST Neural Compilation toolchain



Integrating the NPU Compiler with MOST
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Exhaustive search on 2-layer model:
Total energy consumption vs OPS/cycle

In this case, applying
kernelwise decomposition on 
the second layer increases the 
energy consumption without
explicit benefits.
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Comparison with full exhaustive search

How can we compare the approximate sets produced with MOSA/NSGA-II 
to the exact Pareto Set (Π) that was found with the Full Exhaustive search?
An useful metric is the Average Distance from Reference Set (ADRS) [4]:

The ADRS is usually measured in terms of percentage; lower is better.

[4] ReSPIR: A response surface-based pareto iterative refinement for application-specific design space exploration, Palermo G, 
Silvano C, Zaccaria V, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

Algorithm # Points ADRS

Full Search 1864 Ref.

MOSA 1001 3,4 %

NSGA-II 129 17,2 %
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Tiny-Yolo-v2

This model is a real-time neural network for object detection that detects 20 

different classes. It is made up of 9 convolutional layers and 6 max-pooling layers 
and is a smaller version of the more complex full YOLOv2 network.

Metric Value

Type Detection

GFLOPs 5.424

MParams 11.229

mAP 29.11%

In img shape 3x416x416
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Exploration algorithms comparison
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Baseline: one-fits-all exploration (with #points in : 144)
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% reduction in each objective metric, compared to the best results 
obtained with one-fits-all-layers pruning



Conclusions and future works

Conclusions:

• we have described the HW 
architecture of ST experimental
NPU and its compilation toolchain
for embedded ML

• we have integrated a DSE engine
with the NPU compiler and 
evaluated several exploration
methodologies to efficiently find
the optimal mapping of 
DCNNs on the NPU

• the MOSA exploration algorithm
yields the best results at the cost 
of a longer exploration time, 
while the NSGA-II is faster

Future works:

• Evaluate the optimizations order as
an additional parameter to explore

• Extend the 
exploration methodology to more 
parameters

• Implement a 2-steps hierarchical
exploration to first prune the 
search space

• Compare more optimization
algorithms, evaluate ML-based
autotuning
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Thank you
for your attention!

Questions?
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Fabrizio Indirli 
fabrizio.indirli@polimi.it


