Design Space Exploration for
ST's Neural Compilation
Toolchain

Fabrizio Indirli, Politecnico di Milano, STMicroelectronics
Cristina Silvano, Politecnico di Milano
Giuseppe Desoli, STMicroelectronics

Andrea C. Ornstein, STMicroelectronics

IWES 2022 — Bari, Italy—22/09/2022

g,
%, =
, R
//’”HIV

MILANO 1863

life.augmented

Introduction

Machine Learning inference on the edge is becoming
pervasive for several real-time tasks:

* Cameras: image classification / object detection

* Smart speakers: speech recognition, NLP

 Smart sensors: Anomaly detection, time-series
forecasting

Need to enable efficient NN inference on
power-constrained devices through:

-> Neural Processing Units Embedded in MCUs and SOCs
- Dedicated compilation toolchains

IWES 2022 -22/09/2022 DSE for ST Neural Compilation toolchain 2

STMicroelectronics Experimental NPU

A low-power embedded CNN acceleratorto implement a data-flow based inference
engine. It is designed to be modular and parametric to address a wide spectrum of
computational requirements and efficiency needs.

g ™
ST NPU
Flash memory o |
Conv Acc 1 “'; STREAM SWITCH Actlvatl10n Unit
- T T T T
[) : : Activation Unit
ConvAcc2 H: « : ')_,__.. 0|va|20n ni
[I] I I |
= 1] 1 < - .
Conv Acc 3 _E_ T ¥ A : Arlthm?tlc Unit
1 1 1 .
1] 1 :
Conv Acc 4 : I : : . Arlthm(;tlc Unit
1 : [:
1
ARM CPU Pooling Unit 1 + - - g 5 || Pooling unit 2
1] 1 1
1 [l [:
1 LY Y Y
Control DMA DMA DMA DMA DMA
3 Registers & 01 02 03 04 || 05
N Interrupt
controller
J

Peripherals
IWES 2022 -22/09/2022 DSE for ST Neural Compilation toolchain 3

STMicroelectronics Neural Toolchain

. NN Model (ONNX) HW Description

To program this NPU, a dedicated compilation toolchain
and low-level runtime library are in charge of: Graph Optimization

« e e NN Topology
 Optimizingthe NN model
* Binding the NN nodes to the Resource Allocation

NPU's computational units
CFG Graph

* Scheduling the operations'across

several execution epochs Lowering & Scheduling

* Allocating the memory buffers

Mapped Conv. Mapped Conv. Mapped Conv.

* Producingthe final code Layer Layerz | | LayerN

e Estimating runtime metrics:

* Execution latency (#cycles) Runtime library

 Throughput

Optimization & code generation

* Power consumption
* Memory footprint

Executable

MCU + NPU

Convolutional layers mapping options

Input features

The Neural compiler can apply optimizations on the

‘ L3
\A' Convolutional layers, to use the NPU resources more

efficiently. Some of these optimizationspasses are:

Output tensor

Kernels Text isnot SVG - cannot display

KerneIW|.s.e ChanneI\Aflfe Channelwise
decomposition decomposition pipelining
Decompose the layer in N Decompose the layerin M Map the layer on a pipeline of
parallel convolutions, parallel convolutions, each of CAs, each of which computes
each of which which computes C/M the convolution on C/L
computes K/N kernels input channels, input channels and accumulat
then accumulates the results es on the intermediate results.

Input tensor 1st channel

Kernels

Chained Batch Execution

EMAP ==
P CAO
' BATCHMIKO

ouT
FMAP next !
Output tensor
bach [pA) | CAN | [OA]

Input tensor
Kernels channels 2 & 3

IWES 2022 -22/09/2022 DSE for ST Neural Compilation toolchain 5

Optimal mapping and space cardinality

Objectives: Given a set of hardware configurations and a NN model:
find the best hardware configuration and the associated optimal mapping that
minimizes a cost function (power consumption, latency, memory footprint).

Number of Conv Accelerators Generic 1,2,4,8
Split degree in Kernel-wise decomposition Layer-wise 1 (off), 2, 4
Split degree in Channel-wise decomposition Layer-wise 1 (off), 2, 4
Max length of ConvAccs pipeline Layer-wise 1,2,3,4

Exhaustive search not possible for networks with multiple layers:
e With 3 layers: # combinations> 400 000 .
e With 9 layers: # combinations> 1016 o |

"
+
¢
50 %
%;
§

T T
"FULL_WTARG_DB" +

40

Automatic Exploration techniques needed to:

averagePower

. . N . 30 +
* Find optimal configurationsand/or the Pareto) S
. i Rt
frontiers ol M .]
+ 4 4y
* Explore tradeoffs when moving in the design space S0 e a0 1m0 0 25a0 ma0’

totalCycles

IWES 2022 -22/09/2022 DSE for ST Neural Compilation toolchain 6

MOST Exploration framework

MOST (Multi-Objective System Optimizer) [5] is an
open-source design space explorationtool developed ST N 7

at Politecnico di Milano. /IS IN_ NI
VA A B B Y S AV A |

. . . . [I IN____ [/ ____ /] /
It is an interactive program to explore a design space

of configurationsfor a particulararchitecture for
which an executable model exists
(In our work: the Neural compiler).

Design

This DSE framework is flexible and modularin terms of: 3 . o
. MOST . c Experiments
e target architecture i ®
* system-level models and simulator g :
. . . . Y Optimization
e optimizationalgorithms E Algorithm
. . . (@)
* Design of experiments algorithms - = [ot
e system-level metrics Design Space v
Definition File UselCace

Simulator

[5] github.com/vzaccaria/most

Exploration algorithms (1)

Full search (baseline): Exhaustive search that finds the optimal solution in exponential
time (only for small networks)

Search with one-fits-all-layers pruning: Prune the design space by considering only
the configurationsin which the layer-wise parameters are identical for all the layers

MOSA (Multi-Objective Simulated Annealing) with Face-Centered Central Composite
initialization:initially, a set of pointsis generated '
including full factorial designs, center points, and
face-centered axial points.

Starting from this initial set, the Simulated Annealing
search [1] is performed for several epochs.

In each epoch, new configurationsare constructed by
imposing a random displacement, and they are evaluated:

ective Function f(X)

Obj

* They are accepted if they show an improvement;

e Otherwise, they get randomly accepted or rejected according to a probability
distribution with the acceptance probability decreasingin later epochs.

[1] K. 1. Smith etal, “Dominance-based multiobjective simulated annealing,” IEEE TECYV, vol. 12, no. 3, pp. 323-342, 2008.

[2] Picture from O. Ghasemalizadeh et al. “A Review of Optimization Techniques in Artificial Networks”,
International Journal of Advanced Research, 2016

Exploration algorithms (2)

* NSGA-Il (Non-Dominated Sorting Genetic Algorithm Il [3]) with

ranfl]ortr)\ |n.|t|a.I|zat|on: i | [E[eToTald[o] | cone N
at the eglnnmg,a'parent population |sgengratg o [T | cmomosome 42 VT
randomly. Each pointof the current populationis »3 [FTaiTeT]

evaluated and gets assigned its non-dominationlevel, | ., o0
which serves as fitness function.
The lowest-levels fronts (sets of points) are selected to build the
next generation through recombination, mutation and elitist

cloning. The last front is partitioned based on crowding distance.

A5 [171]1]0fof0
a6 [ofofo[1]1]1

Population

* Greedy Exploration: first, an initial set of pointsis generated
randomly or through the Face-Centered Central Composite
design of experiments. Then, the algorithm starts to greedily
move within the design space through neighborhood points (ﬂ)
trying to minimize a single objective, and it stops once a local
minimum is found.

[3] K. Deb et al., “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE TEVC, vol. 6, no. 2, pp. 182-197, Apr. 2002

Integrating the NPU Compiler with MOST

NN Model Params list Commands script NN Model HW Description
C / MOST DSE \ Graph Optimization ‘
o Unroll . R
5 layerwise Engine ~ NNTopology
2 parameters . D —————— -
o Design of Resource Allocation ‘)
'43 experiments — 3
o CFG Graph
@ | Add rules b o o g
g S
bt Optimization Params 7 ‘ Lowering & Scheduling =
. m
Q Design algorithm XML o | |) S
B Space .MappedConv.“ I’MappedConv‘." ... [Mapped Conv.
G XML | .Layer1 \ . Layer 2 Layer N '
Q >

J k M)flt;il.cs i Graph inference]/
i N—

IWES 2022 -22/09/2022 DSE for ST Neural Compilation toolchain 10

1
2.4 1 i 1x64x250x250
GENERIC__ target___numCAs
2
4
6 W (32x64xTxT7)
2.2 1
. 1%32x244x244
[&(] =
> E‘"':l X u ot @
S 2.0 - L RS
[
wl
©
S : .
L8 o In this case, applying
Sl S . .y
TP TR kernelwise decomposition on
x @Ten | -
X e O at e the second layerincreases the
.)?'... a x Xy A= i 1
1.6 - W mxee g . x = energy consumption without
" "x Xz x S a"X u n . . .
ke e, T explicit benefits.
10 20 30 40 50 60 70 80

Exhaustive search on 2-layer model:
Total energy consumption vs OPS/cycle

X {1x16x256x256)
W (64x16x7xT7}

Conv_idcl__ split_conv_kernelwise__num_spli

total_OPS_cycle

IWES 2022 -22/09/2022

(normalized values)

DSE for ST Neural Compilation toolchain

11

Comparison with full exhaustive search

How can we compare the approximate sets produced with MOSA/NSGA-II
to the exact Pareto Set () that was found with the Full Exhaustive search?
An useful metric is the Average Distance from Reference Set (ADRS) [4]:

1 .
ADRS(IL, A) = | ZH (ﬂ?}m {é(zr, mA)})
TR

The ADRS is usually measured in terms of percentage; lower is better.

Algorithm ADRS

Full Search 1864 Ref.
MOSA 1001 3,4 %
NSGA-II 129 17,2 %

[4] ReSPIR: A response surface-based pareto iterative refinement for application-specific design space exploration, Palermo G,
Silvano C, Zaccaria V, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

IWES 2022 -22/09/2022 DSE for ST Neural Compilation toolchain

12

Tiny-Yolo-v2

This model is a real-time neural network for object detection that detects 20
different classes. It is made up of 9 convolutional layers and 6 max-pooling layers
and is a smaller version of the more complex full YOLOv2 network.

Metric ____| Value

' Type Detection
ol E , GFLOPs 5.424
| . MParams 11.229
= - " 2 26 13 13 13 13 mAP 29- 1 1%
3 16 4 128 256 250 512 1024 55
mba mabix: mebixi mwiv meix e oo od In img shape 3x416x416

L SR

Final detections

Class probability map

IWES 2022 -22/09/2022 DSE for ST Neural Compilation toolchain 13

Exploration algorithms comparison

% reduction in each objective metric, compared to the best results
obtained with one-fits-all-layers pruning

memory || 1.22%
footprint | I %82?;/2 —
1 4.36 %
(a;;;g 033% % MOSA
— NSGA-II
cycles | 6.79 ‘Vr 10.00 % = Greedy
per OF | 14.6 %
0 5 10 15 20 25
(b) # points |1 110 A |
1,001

0 200 400 600 300 1,000 1,200

Baseline: one-fits-all exploration (with #pointsin : 144)
IWES 2022 -22/09/2022 DSE for ST Neural Compilation toolchain 14

Conclusions and future works

Conclusions:

we have described the HW
architecture of ST experimental

NPU and its compilation toolchain
for embedded ML

we have integrated a DSE engine
with the NPU compiler and
evaluated several exploration
methodologies to efficiently find
the optimal mapping of
DCNNson the NPU

the MOSA exploration algorithm
yields the best results at the cost
of a longer exploration time,
while the NSGA-Il is faster

Future works:

Evaluate the optimizationsorder as
an additional parameterto explore

Extend the
exploration methodologyto more
parameters

Implement a 2-steps hierarchical
explorationto first prune the
search space

Compare more optimization
algorithms, evaluate ML-based
autotuning

Fabrizio Indirli
fabrizio.indirli@polimi.it

Thank you
for your attention!

Questions?

IWES 2022 -22/09/2022 DSE for ST Neural Compilation toolchain

16

