

Knowledge Representation and Reasoning for Unmanned Aerial Vehicle Intelligence

I. Bilenchi¹, A. Tomasino¹, F. Gramegna¹, S. Ieva¹, A. Pinto¹, G. Loseto², F. Scioscia¹, M. Ruta¹

¹Polytechnic University of Bari – Bari, Italy ²LUM University "Giuseppe Degennaro" – Casamassima, Italy

i∃ Outline

- Intelligent UAV Systems: technologies and limitations
- Semantic Web Technologies for UAVs
 - Non-standard inference services
- Case studies
 - Context-aware UAV Systems
 - On-board Intelligent Hazard Detection
- Conclusion and future work

UAV Systems

Unmanned Aerial Vehicles (UAV), a.k.a. "drones"

- Ground Control Station (GCS) for remote control of flight and operational parameters, mission planning and sensors monitoring and management
- Autopilot: on-board electronic subsystem autonomously driving the UAV according to received commands from GCS

Traditional applications

- Surveillance
- Search and rescue
- Precision farming

New applications in logistics and smart cities

- Increasing miniaturization and integration of micro-controllers, programmable processing units and sensors
- UAV Internet of Things Cloud convergence

Intelligent UAV Systems

Data analysis and decision traditionally implemented in GCS

- Continuous communication between GCS and the UAV → high energy consumption
- Communication latency unsuitable for real-time applications

Embedding Artificial Intelligence (AI) into UAV systems

- Enhance perceptive capabilities with autonomous decision-making
- UAV swarms as context-aware self-coordinating teams

AI and Machine Learning (ML) algorithms available locally to UAVs

Semantic Web Technologies for UAVs

Semantic Web of Everything vision

- Annotate data, objects, phenomenons and events with metadata to make their semantics machine understandable
- Adoption of standard Semantic Web languages for broad interoperability
- Reasoning tasks on pervasive & embedded devices to infer additional knowledge
- Non-standard inference services for on-the-fly query processing
- Logic-based explainability of results
- Tight computational resource and energy constraints

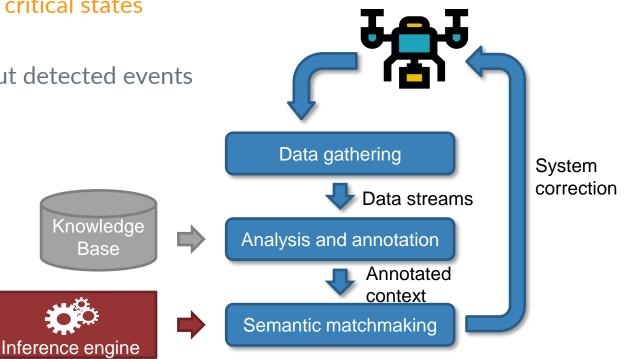
Web Ontology Language (OWL)

- Modelling complex and structured knowledge
- OWL Knowledge Base (KB) composed by:
 - Terminological Box (TBox, a.k.a. ontology): classes and relationships in the knowledge domain
 - Assertion Box (ABox): assertions concerning individuals of a particular problem within the domain

Tiny-ME embedded reasoning engine [Ruta *et al.*, JWS, 73, 2022]

OO UAV Context Awareness

UAV systems can be made **situation-aware** and **self-adapting**, monitoring

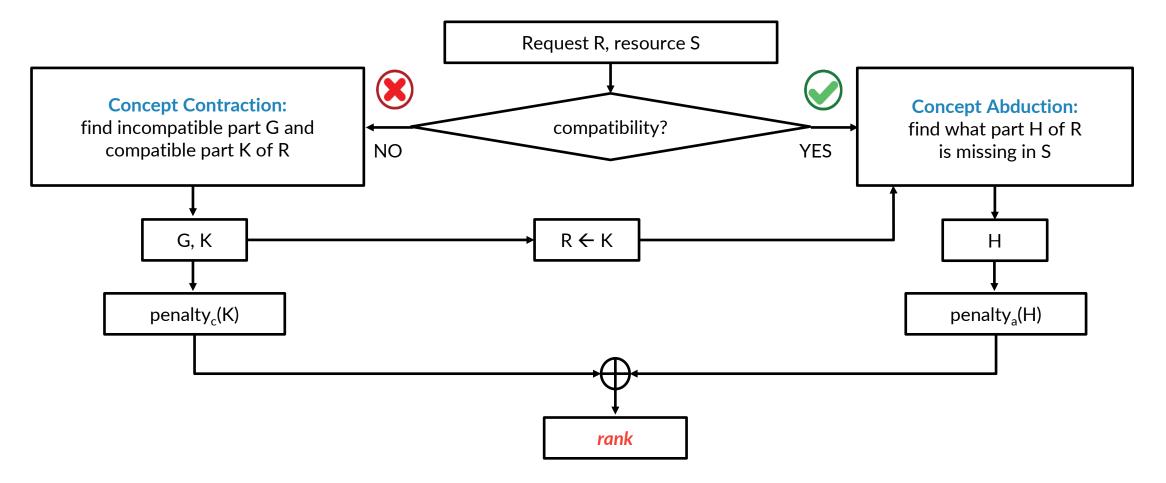

- Their internal state (kinematics, processing resource usage, previous results, ...)
- Sensory and environment contextual features (wind speed/direction, lighting, camera settings, ...)

On-board reasoning enables real-time autonomous context management

- Determine the proximity of the current situation to critical states
- Dynamically adapt to avoid the critical state
- Improve operational efficiency and confidence about detected events

Information modeling

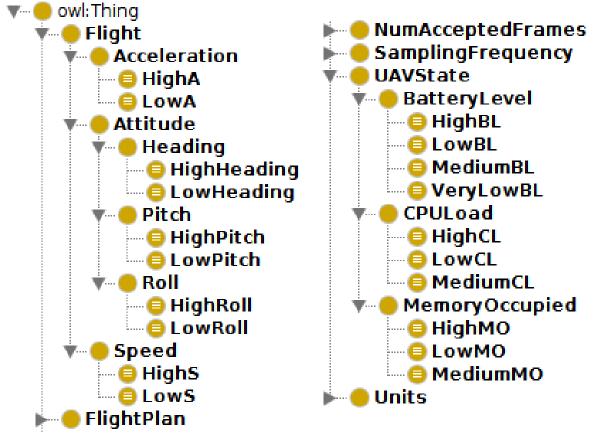
- General description of internal and external features in terms of an ontology model
- Set of pre-defined individuals describing critical scenarios
- Annotation of the current state as a new individual



Bilenchi et al., Knowledge Representation and Reasoning for Unmanned Aerial Vehicle Intelligence 7th Italian Workshop on Embedded Systems (IWES 2022)

Semantic Matchmaking

Semantic Matchmaking exploits Concept Contraction and Concept Abduction nonstandard inference services


Bilenchi et al., Knowledge Representation and Reasoning for Unmanned Aerial Vehicle Intelligence 7th Italian Workshop on Embedded Systems (IWES 2022)

O UAV Context Awareness: case study

Ontology for UAV crowd detection with nadiral camera and frame-based image analysis

Classes describe the levels of the parameters managed by the UAV

Current and critical scenarios described with semantic expressions based on the ontology classes

Current:	(HighRoll) a	nd ((LowPitch) and (LowA)		
	and (LowS) a	nd	(LowHeading) and		
	(MediumBL) a	nd	(HighCL)	and	(HighMO)

The current scenario is compared with every critical scenario in the Knowledge Base, *e.g.*:

```
Crit1: (Roll) and (Pitch) and (Heading) and
(Acceleration) and (BatteryLevel) and
(Speed) and (HighCL) and (HighMO)
```

Semantic Matchmaking detects a critical match threshold due to high CPU load and high occupied memory contextual features

Processing of the next frame is skipped

Bilenchi et al., Knowledge Representation and Reasoning for Unmanned Aerial Vehicle Intelligence 7th Italian Workshop on Embedded Systems (IWES 2022)

Real-time identification of environmental risk levels and handling

Information modeling

- UAV on-board sensors and actuators
- Detectable substances and their dangerous levels
- Critical atmosphere conditions for the considered substances

Periodic task

- Collect values from on-board sensors and annotate them
- Exploit the Tiny-ME reasoning engine to build a class expression for the current scenario
- Semantic matchmaking between the newly created individual and risk conditions in the KB

Reference platform

- 3DR Iris Plus UAV
- Pixhawk 1 embedded flight controller

32-bit STM32F427 Cortex® M4 core, 168 MHz/256 KB RAM/2 MB Flash

Apache NuttX OS

Politecnico di Bari

△ On-board Hazard Detection

Detection of flammable and explosive substances according to Directive 2014/34/UE

The current atmospheric condition is expressed through a semantic expression

MediumConcentration Methane and HighOxygenConcentration_Methane and LowVentilation_Methane

It is compared with every individual describing critical atmospheric conditions

Explosive_Methane ≡ HighConcentration_Methane and HighOxygenConcentration_Methane and LowVentilation_Methane Flammable_Methane ≡ MediumConcentration_Methane and HighOxygenConcentration_Methane and LowVentilation_Methane

Semantic Matchmaking detects *Flammable_Methane* as the nearest individual

- A flammable atmospheric condition is detected
- An alert related to the methane substance is raised

Conclusion & future work

- Integration of Knowledge Representation and Reasoning in Unmanned Aerial Vehicles
 - Miniaturization of electronic components allows advanced autonomous applications in UAV systems
 - Semantic Web of Everything approaches and tools can grant better efficiency and explainability w.r.t. conventional Machine Learning techniques
 - Case studies concerning context-awareness and advanced hazard detection

• Future work

- Systematic performance evaluation on relevant UAV platforms
- Expanding the scale and scope of applications
- Knowledge-based information fusion within UAV swarms and with vehicular networks and urban infrastructures

Arnaldo Tomasino (Speaker)

Ph.D. student

Information Systems Laboratory • Polytechnic University of Bari

E-mail: arnaldo.tomasino@poliba.it

Webpage: http://swot.sisinflab.poliba.it

