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Agenda
1. AI at the extreme edge: Motivation and General Flow

2. Lightweight Neural Architecture Search

3. Quantization and mixed-precision search
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DNNs at the Extreme Edge

• Near-sensor DNN inference has several potential benefits w.r.t. a 
traditional cloud-centric approach:
1. More predictable and lower (*) latency
2. Data privacy
3. Lower energy consumption (*)

inference
(DNN)

Data End Node Gateway Cloud

Latency ↓ Predictability ↑ Privacy ↑ Energy ↓(*) possibly
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DNN Deployment Flow
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2. Lightweight 
Neural Architecture 
Search



Lightweight DNAS for Inference Optimization on Constrained Embedded Nodes
S e p t e m b e r  2 3 t h ,  2 0 2 2

Neural Architecture Search

• Picking hyper-parameters manually is tricky:
• Biases (rules of thumb, traditions, etc.)
• Fragmented and coarse design space explorations (e.g., width/res mult in MobileNets)
• Classic ML: hand-craft features, DL: hand-craft feature extractors!

• Neural Architecture Search (NAS):
• Automatic optimization of the network topology, exploring a large and fine-grain design 

space of hyper-parameter settings
• Typically multi-objective: co-optimize accuracy and model complexity

• Model size/#MACs….
• …or better, latency/energy directly (requires models)!
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Classic NAS

• Procedure: • Key steps:
1. Define the search space:

• Design variables (topology, cardinality, precision)
• Discretization of each variable (e.g., #filters in {32, 

64, 128}, K in {3, 5, 7}, etc.)

2. Define a search engine:
• RL, Evolutionary, Bayesian, others…

3. Build a performance estimator:
• The actual bottleneck!
• Accuracy estimation encompasses training
• Extra-functional metrics are HW-dependent 

(deployment or accurate model)

• Thousands of GPU-hours per search!

Guess

Train

Evaluate

Propose 1+ new 
architecture(s)

Feedback to 
drive the search
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POLITO’s Lightweight NAS

• Mask-based Differentiable NAS (DNAS):
• Relax the search space to make it continuous and differentiable
• Optimize the topology by gradient descent while training the network

• Greatly reduce search costs

• Working principle:
• Search the architecture hyperparameters “by subtraction”, starting from a large 

seed model
• Shrink the seed layers (e.g., eliminate some channels, reduce the filter size, etc)
• Similar to structured pruning…
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POLITO’s Lightweight NAS

• Named ”Pruning In Time” (PIT):
• Hybrid between NAS and pruning 
• Focuses mostly on 1D CNNs for processing time-series.

• Recently applied also to 2D CNNs for vision on nano-drones, with 
excellent results…
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PIT

• Search space: For each Convolutional or Fully-Connected layer

1D Convolutional Kernel

Subsets 
of the kernel

Smaller 
number of 

output 
channels

Smaller 
receptive 

field

Larger 
dilation 
factor

Seed 
Network
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PIT

• Add a L1 regularization term to the training loss function that brings masks to 0
• More 0-valued masks → smaller network
• Must model network complexity in a differentiable way
• Practical regularizers:

• N. of weights, correlates with memory occupation
• N. of MACs, correlates with latency/energy

• Final Loss Function:

• Changing the 𝝀 yields different trade-offs between accuracy and cost

Regularizer, function of
Trainable binary masks
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PIT Results

• 4 edge-relevant benchmarks (biosignals, keyword spotting).
• Up to 8x smaller and 7x faster models at iso-performance
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PIT Results

• Up to 5.5x energy reduction with respect to hand-tuned state-of-the-art models 
when deployed on two different extreme edge devices (GWT GAP8 and 
STM32H7).



Lightweight DNAS for Inference Optimization on Constrained Embedded Nodes
S e p t e m b e r  2 3 t h ,  2 0 2 2

PIT Latest Developments

• PIT has been now extended to 2D
networks for vision.
• Example: drone-to-human

pose estimation in low-power
nanodrones

• Same results of previous hand-tuned
network with 3x less memory, thanks to
PIT

• Collaboration with UNIBO + ETHZ
+ IDSIA (Lugano)

• Paper submitted @ ICRA23
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PIT Latest Developments

• Real objective: Minimize latency/energy and maximize accuracy  
under max memory constraint

• Solution: new loss formulation:

• S = size regularizer
• O = ops/latency/energy regularizer
• s* = size constraint (HW-dependent)

• Sweep 𝜇 to trade-off accuracy and latency
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PIT Latest Developments

• Tested on 2D CNN, searching the n. of output channels only:
• IC = image classification, VWW = visual wake word, KWS = keyword spotting
• Same color points correspond to same s*
• Almost 1 order of magnitude span in OPs and ± 5% accuracy for the same size
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NAS@POLITO References

• PIT:
• M. Risso et al, “Lightweight Neural Architecture Search for Temporal Convolutional Networks at the Edge”,

IEEE Trans. on Computers 2022
• M. Risso et al, “Pruning In Time (PIT): A Lightweight Network Architecture Optimizer for Temporal 

Convolutional Networks”, Proc. ACM/IEEE DAC 2021

• Multi-regularization:
• M. Risso et al, ”Multi-Complexity-Loss DNAS for Energy-Efficient and Memory-Constrained Deep Neural 

Networks”, Accepted at ISLPED 2022.

• Application to PPG-based HR Monitoring:
• A. Burrello et al, “Q-PPG: Energy-Efficient PPG-based Heart Rate Monitoring on Wearable Devices”, IEEE 

Trans. on BioCAS, 2021
• M. Risso et al, “Robust and energy-efficient PPG-based heart-rate monitoring”, Proc. IEEE ISCAS 2021

• Code: https://github.com/EmbeddedML-EDAGroup



Lightweight DNAS for Inference Optimization on Constrained Embedded Nodes
S e p t e m b e r  2 3 t h ,  2 0 2 2

NAS@POLITO Future Work

• Combine mask-based approach with other types of NAS to 
support a wider search space

• Joint NAS and mixed-precision search (see next)

• Better HW-aware models.
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3. Quantization and 
Mixed-Precision 
Search
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Quantization

• DNNs are very tolerant to the use of low-precision data representations for 
weights & activations
• For extreme edge, quantization can be mandatory (no FPU).

• Edge de facto standard: 8bit integer quantization
• Well supported by HW ISAs
• Little degradation in accuracy, especially with QAT (empirical “sweet spot”)
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Fixed- vs Mixed-Precision

• Fixed-precision: while Δ and z change 
per-tensor (or channel), the bit-width N 
is fixed for the entire network

• Mixed-precision: uses a different N 
layer-wise or channel-wise.
• Typically 1, 2, 4, 8-bit
• Nw (weights) can differ from Nx

(activations)
• Possibly higher compression for the same 

accuracy

[Source] B. Moons. Energy-efficient 
ConvNets through approximate 
computing, 2016
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Mixed-Precision Quantization

• Bit-width assignment problem:
• How to assign N to different layers?
• Huge search space: ((𝑁𝑝𝑟𝑒𝑐)2)𝑁𝑙𝑎𝑦𝑒𝑟𝑠

• Classical solutions:
• Black-box meta-heuristics (e.g., genetic algorithms)
• Greedy
• Simulated Annealing

• Can be approached with a method similar to DNAS!
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Mixed Precision @ POLITO

• SoTA:
• Per-channels quantization parameters (Δ and z)
• Per-layer bit-width (mixed-precision)

• How to achieve further compression? → per-channel bit-width
• Currently applied only to weights
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Mixed Precision Results

• CIFAR-10 + ResNet8:
• deployed on MPIC: RISC-V PULP core with support for 1/2/4/8-bit MACs
• Up to 54% memory reduction and 36% cycles reduction at iso accuracy w.r.t . EdMIPS 
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Mixed Precision @ POLITO References

• Search tool:
• M. Risso et al, “Fine-grained mixed-precision quantization through efficient 

DNAS for memory-constrained MCUs”, arXiv preprint arXiv:2206.08852.

• Applications of EdMIPS to extreme edge tasks:
• A. Burrello et al, “Q-PPG: Energy-Efficient PPG-based Heart Rate Monitoring on 

Wearable Devices”, IEEE Trans. on BioCAS, 2021
• F. Daghero et al, “Human Activity Recognition on Microcontrollers with 

Quantized and Adaptive Deep Neural Networks”, ACM Trans. on Embedded 
Systems, 2022.
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Mixed Precision @ POLITO Future Works

• Joint NAS and mixed-precision search

• Target domain-specific accelerators that support peculiar 
quantization formats (e.g., Analog In-Memory Computing)


