Lightweight DNAS for Inference Optimization on Constrained Embedded Nodes

Matteo Risso

Department of Control and Computer Engineering, Politecnico di Torino

Agenda

1. Al at the extreme edge: Motivation and General Flow

2. Lightweight Neural Architecture Search

3. Quantization and mixed-precision search

1. Al at the Extreme Edge

DNNs at the Extreme Edge

- Near-sensor DNN inference has several potential benefits w.r.t. a traditional cloud-centric approach:
 - 1. More predictable and lower (*) latency
 - 2. Data privacy
 - 3. Lower energy consumption (*)

DNN Deployment Flow

DNN Deployment Flow

2. Lightweight Neural Architecture Search

Neural Architecture Search

- Picking hyper-parameters manually is tricky:
 - Biases (rules of thumb, traditions, etc.)
 - Fragmented and coarse design space explorations (e.g., width/res mult in MobileNets)
 - Classic ML: hand-craft features, DL: hand-craft feature extractors!

- Neural Architecture Search (NAS):
 - Automatic optimization of the network topology, exploring a large and fine-grain design space of hyper-parameter settings
 - Typically multi-objective: co-optimize accuracy and model complexity
 - Model size/#MACs....
 - ...or better, latency/energy directly (requires models)!

Classic NAS

• Procedure:

- Key steps:
- 1. Define the search space:
 - Design variables (topology, cardinality, precision)
 - Discretization of each variable (e.g., #filters in {32, 64, 128}, K in {3, 5, 7}, etc.)
- 2. Define a search engine:
 - RL, Evolutionary, Bayesian, others...
- 3. Build a performance estimator:
 - The actual bottleneck!
 - Accuracy estimation encompasses training
 - Extra-functional metrics are HW-dependent (deployment or accurate model)
- Thousands of GPU-hours per search!

POLITO's Lightweight NAS

• Mask-based Differentiable NAS (DNAS):

- Relax the search space to make it **continuous and differentiable**
- Optimize the topology by gradient descent while training the network
 - Greatly reduce search costs
- Working principle:
 - Search the architecture hyperparameters "by subtraction", starting from a large seed model
 - Shrink the seed layers (e.g., eliminate some channels, reduce the filter size, etc)
 - Similar to structured pruning...

POLITO's Lightweight NAS

- Named "Pruning In Time" (PIT):
 - Hybrid between NAS and pruning
 - Focuses mostly on 1D CNNs for processing time-series.
- Recently applied also to 2D CNNs for vision on nano-drones, with excellent results...

PIT

• Search space: For each Convolutional or Fully-Connected layer

Add a L1 regularization term to the training loss function that brings masks to 0 ٠

- More 0-valued masks \rightarrow smaller network
- Must model network complexity in a **differentiable** way ٠
- Practical regularizers: ٠
 - N. of weights, correlates with memory occupation •
 - **N. of MACs**, correlates with latency/energy

Final Loss Function: •

 $\min_{W,\theta} \mathcal{L}(W;\theta) + \lambda \mathcal{R}(\theta) \longrightarrow \underset{\text{Trainable binary masks}}{\text{Regularizer, function of}}$

Changing the λ yields different trade-offs between accuracy and cost ۲

PIT Results

- 4 edge-relevant benchmarks (biosignals, keyword spotting).
- Up to 8x smaller and 7x faster models at iso-performance

PIT Results

 Up to 5.5x energy reduction with respect to hand-tuned state-of-the-art models when deployed on two different extreme edge devices (GWT GAP8 and STM32H7).

				GAP8		S1M32	
		Perf.	Mem.	Lat.	En.	Lat.	En.
Task	TCN	int8 (float32)	[kB]	[ms]	[mJ]	[ms]	[mJ]
PPG	HT	5.01 (5.14) BPM	423	23.2	1.2	58.3	13.6
	S	5 / L (p.17) BPM	4.7	1.18	0.06	3.2	0.75
	L	5.01 (5.03) BPM	53.2	4.25	0.22	15.2	3.56
ECG	HT	94.2 (94.2) %	15.2	2.69	0.14	6.66	1.56
	S	92.84 (93.16) %	0.9	0.78	0.04	1.8	0.42
	L	94.13 (94.13) %	5.4	1.26	0.06	2.84	0.66
sEMG	HT	88.89 (88.87) %	88.8	61.0	3.11	291	68.1
	S	86.97 (86.98) %	35.4	39.6	2.02	169	39.5
	L	91.2 (90.99) %	317.8	238	12.1	960	225
KWS	HT	92 (92.31) %	323.4	13.4	0.68	30.7	7.17
	S	87 (86.58) %	9.8	1.40	0.07	2.66	0.62
	L	92.16 (92.64) %	56.5	3.74	0.19	10.6	2.48

PIT Latest Developments

- PIT has been now extended to 2D networks for vision.
 - Example: drone-to-human pose estimation in low-power nanodrones
 - Same results of previous hand-tuned network with 3x less memory, thanks to PIT
 - Collaboration with UNIBO + ETHZ + IDSIA (Lugano)
 - Paper submitted @ ICRA23

PIT Latest Developments

- Real objective: Minimize latency/energy and maximize accuracy under max memory constraint
- Solution: new loss formulation:

$$\min_{W,\theta} \mathcal{L}(W;\theta) + \lambda |\mathcal{S}(\theta) - s^*| + \mu \mathcal{O}(\theta)$$

- S = size regularizer
- *O* = ops/latency/energy regularizer
- s* = size constraint (HW-dependent)
- Sweep μ to trade-off accuracy and latency

PIT Latest Developments

- Tested on 2D CNN, searching the n. of output channels only:
 - IC = image classification, VWW = visual wake word, KWS = keyword spotting
 - Same color points correspond to same s*
 - Almost 1 order of magnitude span in OPs and \pm 5% accuracy for the same size

NAS@POLITO References

• PIT:

- M. Risso et al, "Lightweight Neural Architecture Search for Temporal Convolutional Networks at the Edge", IEEE Trans. on Computers 2022
- M. Risso et al, "Pruning In Time (PIT): A Lightweight Network Architecture Optimizer for Temporal Convolutional Networks", Proc. ACM/IEEE DAC 2021
- Multi-regularization:
 - M. Risso et al, "Multi-Complexity-Loss DNAS for Energy-Efficient and Memory-Constrained Deep Neural Networks", Accepted at ISLPED 2022.
- Application to PPG-based HR Monitoring:
 - A. Burrello et al, "Q-PPG: Energy-Efficient PPG-based Heart Rate Monitoring on Wearable Devices", IEEE Trans. on BioCAS, 2021
 - M. Risso et al, "Robust and energy-efficient PPG-based heart-rate monitoring", Proc. IEEE ISCAS 2021
- Code: https://github.com/EmbeddedML-EDAGroup

NAS@POLITO Future Work

- Combine mask-based approach with other types of NAS to support a wider search space
- Joint NAS and mixed-precision search (see next)
- Better HW-aware models.

3. Quantization and Mixed-Precision Search

Quantization

- DNNs are very tolerant to the use of low-precision data representations for weights & activations
 - For extreme edge, quantization can be mandatory (no FPU).
- Edge de facto standard: **8bit integer quantization**
 - Well supported by HW ISAs
 - Little degradation in accuracy, especially with QAT (empirical "sweet spot")

Fixed-vs Mixed-Precision

- Fixed-precision: while ∆ and z change per-tensor (or channel), the bit-width N is fixed for the entire network
- Mixed-precision: uses a different N layer-wise or channel-wise.
 - Typically 1, 2, 4, 8-bit
 - N_w (weights) can differ from N_x (activations)
 - Possibly higher compression for the same accuracy

Mixed-Precision Quantization

• **Bit-width assignment** problem:

- How to assign N to different layers?
- Huge search space: $((N_{prec})^2)^{N_{layers}}$
- Classical solutions:
 - Black-box meta-heuristics (e.g., genetic algorithms)
 - Greedy
 - Simulated Annealing
- Can be approached with a method **similar to DNAS!**

Mixed Precision @ POLITO

- SotA:
 - Per-channels quantization parameters (Δ and z)
 - Per-layer bit-width (mixed-precision)

- How to achieve further compression? → per-channel bit-width
 - Currently applied only to weights

Mixed Precision Results

- CIFAR-10 + ResNet8:
 - deployed on MPIC: RISC-V PULP core with support for 1/2/4/8-bit MACs
 - Up to **54% memory reduction** and **36% cycles reduction** at **iso accuracy** w.r.t. EdMIPS

Mixed Precision @ POLITO References

- Search tool:
 - M. Risso et al, "Fine-grained mixed-precision quantization through efficient DNAS for memory-constrained MCUs", arXiv preprint arXiv:2206.08852.

- Applications of EdMIPS to extreme edge tasks:
 - A. Burrello et al, "Q-PPG: Energy-Efficient PPG-based Heart Rate Monitoring on Wearable Devices", IEEE Trans. on BioCAS, 2021
 - F. Daghero et al, "Human Activity Recognition on Microcontrollers with Quantized and Adaptive Deep Neural Networks", ACM Trans. on Embedded Systems, 2022.

Mixed Precision @ POLITO Future Works

- Joint NAS and mixed-precision search
- Target domain-specific accelerators that support peculiar quantization formats (e.g., Analog In-Memory Computing)

