
A Catalog-based AIG-Rewriting Approach to the
Design of Approximate Components

Mario Barbareschi, Salvatore Barone, Nicola Mazzocca, and
Alberto Moriconi

name.surname@unina.it

University of Naples Federico II

7th Italian Workshop on Embedded Systems 1 / 20

name.surname@unina.it

Outline

1 Approximate computing, approximate circuits and automated tools

2 The basis of our methodology

3 A detailed view on our flow and tool

4 Experimental result and conclusion

7th Italian Workshop on Embedded Systems 2 / 20

Approximate computing

Problems:

Increasing volume of information
to be processed

Physical limits for ICs
manufacturing process

Idea:

Relax correctness contraints

Exploit inherent error resiliency
of specific problems

The well-known Baboon reference photo
at different approximation levels

How:

A plethora of different
techniques at the software and
hardware level

7th Italian Workshop on Embedded Systems 3 / 20

Approximate circuits and hardware accelerators

Can provide benefits in terms of
energy, performance and area

Interesting applications to
hardware accelerators in
embedded real-time systems

Applications to AI accelerators
in the edge for
resource-constrained devices
Enable satisfying otherwise
unobtainable time constraints

7th Italian Workshop on Embedded Systems 4 / 20

Approximate circuits and hardware accelerators

Pioneering efforts have focused
on finely hand-tuned circuits,
especially arithmetic

Adoption could benefit from
systematic and automatic
methodologies, starting from
HDLs and desired constraints

7th Italian Workshop on Embedded Systems 5 / 20

Related works

Many possible techniques!

We are interested in functional approximation, the modification of the
logic implemented by the circuit; some techniques used at this level
are:

Modifications of classical coverage methods (Shin et al.)
Fault injection (Wu et al.)
Fusion of nodes with similar functionality
...

We will focus on combinational circuits described in HDL

7th Italian Workshop on Embedded Systems 6 / 20

Research aims

We aim to provide a methodology and a tool that is:

Automatic

Generic, can be applied to all kinds of circuits

Independent from the error metric (they can be selected from a library
or provided by the user, if needed)

Assists in exploring the design space, providing not a single solution
but an estimation of good design trade-offs between accuracy and
performance gain

Exploits functional approximation in a way that doesn’t cut off big
parts of the design space

7th Italian Workshop on Embedded Systems 7 / 20

Research aims

We aim to provide a methodology and a tool that is:

Automatic

Generic, can be applied to all kinds of circuits

Independent from the error metric (they can be selected from a library
or provided by the user, if needed)

Assists in exploring the design space, providing not a single solution
but an estimation of good design trade-offs between accuracy and
performance gain

Exploits functional approximation in a way that doesn’t cut off big
parts of the design space

7th Italian Workshop on Embedded Systems 7 / 20

Research aims

We aim to provide a methodology and a tool that is:

Automatic

Generic, can be applied to all kinds of circuits

Independent from the error metric (they can be selected from a library
or provided by the user, if needed)

Assists in exploring the design space, providing not a single solution
but an estimation of good design trade-offs between accuracy and
performance gain

Exploits functional approximation in a way that doesn’t cut off big
parts of the design space

7th Italian Workshop on Embedded Systems 7 / 20

Research aims

We aim to provide a methodology and a tool that is:

Automatic

Generic, can be applied to all kinds of circuits

Independent from the error metric (they can be selected from a library
or provided by the user, if needed)

Assists in exploring the design space, providing not a single solution
but an estimation of good design trade-offs between accuracy and
performance gain

Exploits functional approximation in a way that doesn’t cut off big
parts of the design space

7th Italian Workshop on Embedded Systems 7 / 20

Research aims

We aim to provide a methodology and a tool that is:

Automatic

Generic, can be applied to all kinds of circuits

Independent from the error metric (they can be selected from a library
or provided by the user, if needed)

Assists in exploring the design space, providing not a single solution
but an estimation of good design trade-offs between accuracy and
performance gain

Exploits functional approximation in a way that doesn’t cut off big
parts of the design space

7th Italian Workshop on Embedded Systems 7 / 20

Our flow in brief

Basically, our approximation approach consists in:

1 Breaking the original circuit in k-LUTs

2 Synthesize them to AIGs at different degrees of approximation,
building a catalogue

3 Solve the multi-objective combinatorial optimization problem of
choosing the best entries from the catalogue

AIG SMT
SolverHDL

Sources

HDL
Frontend

k-LUTs
mapping

k-LUTs
graph

New Candidate
Generation

and
Evaluation

Archive
Initialization

AMOSA

HDL
SourcesHDL

Sources

HDL
SourcesHDL

SourcesAx-HDL
Sources

LUTs
Catalog

Ax Variants
Archive

7th Italian Workshop on Embedded Systems 8 / 20

The pyALS tool

https://github.com/SalvatoreBarone/pyALS

It’s distributed under GPL-3.0 and leverages some great open source
software and libraries:

Implemented as a plug-in for the Yosys Open Synthesis Suite

Can be integrated with GHDL for VHDL parsing and synthesis

You can use the included Docker image to get started quickly!

M. Barbareschi, S. Barone, N. Mazzocca and A. Moriconi, ”A Catalog-based

AIG-Rewriting Approach to the Design of Approximate Components,” in IEEE

Transactions on Emerging Topics in Computing, doi: 10.1109/TETC.2022.3170502.

7th Italian Workshop on Embedded Systems 9 / 20

https://github.com/SalvatoreBarone/pyALS

Exact synthesis

Our approach is based on the concept of exact synthesis. At its core, it’s a
pretty straightforward idea: find a combinational circuit that

Implements a given specifications

Is optimal w.r.t. some cost criteria, usually the number of nodes
and/or the circuit depth

Ideally, an exact synthesis algorithm:

Takes as input a circuit specification, e.g. a truth table

Gives as output the smallest (or the fastest, or...) circuit that
implements such specification

7th Italian Workshop on Embedded Systems 10 / 20

Satisfiability Modulo Theories

Modern SMT solvers enable us to:

Write mathematical constraints over a set of variables

Find a variable assignment that satisfies such constraints, if it exists

They are not a panacea, however: they tend to scale pretty poorly; so we
need to find a circuit representation that:

Is easy to manipulate mathematically, in order to express constraints

Does not get too big when circuit size increases

We choose AND-inverter graphs for our methodology because they scale
well with circuit size and well supported. Notably, ABC is an academic,
state of the art software system, developed at Berkeley, that uses AIGs for
synthesis, mapping and verification.

7th Italian Workshop on Embedded Systems 11 / 20

A word on simulated annealing...

Our optimization heuristic is based on simulated annealing, a well known
search algorithm based on the physical metaphor of the annealing process
of solids:

We try to minimize an energy function associated to our circuit
variants

It actually is a vector valued energy, because it keeps track of both
error rate and number of gates

We choose the AMOSA algorithms because it’s a multi-objective version
that progressively builds an archive of solution that approximate the
Pareto front.

Bandyopadhyay, Sanghamitra, et al. ”A simulated annealing-based multiobjective

optimization algorithm: AMOSA.” IEEE transactions on evolutionary computation 12.3

(2008)

7th Italian Workshop on Embedded Systems 12 / 20

An example circuit

mult 2 bit.vhd

library ieee;
use ieee.std_logic_1164.all;

entity mult_2_bit is
port(
a : in std_logic_vector (1 downto 0);
b : in std_logic_vector (1 downto 0);
o : out std_logic_vector (3 downto 0)

);
end entity mult_2_bit;

architecture dataflow of mult_2_bit is
signal and01 : std_logic;
signal and10 : std_logic;
signal and11 : std_logic;
signal and0110 : std_logic;

begin
and01 <= a(0) and b(1);
and10 <= a(1) and b(0);
and11 <= a(1) and b(1);
and0110 <= and01 and and10;

o(0) <= a(0) and b(0);
o(1) <= and01 xor and10;
o(2) <= and11 xor and0110;
o(3) <= and11 and and0110;

end architecture dataflow;

The 2 bit multiplier

Its AIG representation

7th Italian Workshop on Embedded Systems 13 / 20

Getting it all together

For the two bit multiplier of our example, a possible optimization step
could be this:

o[0]

a[0]

9

b[0] b[1] a[1]

1213

10

14

11
15

16

o[1] o[2] o[3]

17

→

o[0]

a[0] b[0] b[1]a[1]

o[1] o[2] o[3]

LUT9
11 1

LUT10
-011 1
0-11 1
11-0 1
110- 1

LUT11
-011 1
0-11 1

LUT12
1111 1

→

o[0]

a[0]

9

b[0] b[1]a[1]

12

13

10

14

11

o[1] o[2] o[3]

0

7th Italian Workshop on Embedded Systems 14 / 20

Getting it all together

And a possible tool output could be this:

7th Italian Workshop on Embedded Systems 15 / 20

Benchmark - LGSynth91

We tested our methodology and tool on the well-known LGSynth91
combinational circuit synthesis benchmark collection, that contains both
arithmetic and generic logic circuits, using an error frequency metric:

25 50 75 100
Error frequency (%)

0

20

40

Ex
pe

ct
ed

 re
wa

rd
 (%

) adderfs

0 50 100
Error frequency (%)

10

20

30

Ex
pe

ct
ed

 re
wa

rd
 (%

) c6288

20 40 60
Error frequency (%)

25

50

75

Ex
pe

ct
ed

 re
wa

rd
 (%

) count

0 50
Error frequency (%)

10
20
30
40

Ex
pe

ct
ed

 re
wa

rd
 (%

) des

0 50 100
Error frequency (%)

20

30

40

50

Ex
pe

ct
ed

 re
wa

rd
 (%

) frg2

0 50
Error frequency (%)

0

25

50

75

Ex
pe

ct
ed

 re
wa

rd
 (%

) unreg

7th Italian Workshop on Embedded Systems 16 / 20

Case study - Hardware accelerators and real-time systems

Typical scenario in embedded
real-time applications that
require some tasks to be
hardware-accelerated

Edge AI
Image compression
Image processing and filtering

Optimize w.r.t. execution time
of an hardware task

Our tool can be used in
conjunction with WCET
evaluation tools

Relaxing correctness constraints
allows otherwise unobtainable
schedules of hardware tasks!

7th Italian Workshop on Embedded Systems 17 / 20

Case study - JPEG compression

Exact Circuit Minimum Error Configuration Minimum Area Configuration

Circuit

G
a
te
s

F
P
G
A

L
U
T
s

P
o
w
er

(m
M
)

E
rr
o
r

E
xp

ec
te
d
R
ew

ar
d
(%

)

F
P
G
A

L
U
T
s

A
re
a
S
a
vi
n
g
s
(%

)

P
o
w
er

(m
W

)

P
o
w
er

S
a
vi
n
g
s
(%

)

E
rr
o
r

E
xp

ec
te
d
R
ew

ar
d
(%

)

F
P
G
A

L
U
T
s

A
re
a
S
a
vi
n
g
s
(%

)

P
o
w
er

(m
W

)

P
o
w
er

S
a
vi
n
g
s
(%

)

C6288 2406 754 0.47 0 1.00 750 0.53 0.467 1.06 4.26E+09 37.00 484 35.81 0.28 41.31
f51m 43 12 0.10 1 30.00 8 33.33 0.09 5.05 7.50E+01 65.00 5 58.33 0.08 24.24
z4ml 20 6 0.08 1 8.00 6 0.00 0.08 0.00 7.00E+00 42.00 1 83.33 0.06 23.17
8x8 bits Dadda multiplier 383 141 0.21 0 19.00 114 19.15 0.17 17.39 2.38E+02 43.00 39 72.34 0.10 51.69
8x8 bits array multiplier 420 163 0.20 1 16.00 155 4.91 0.19 3.57 2.52E+02 45.00 48 70.55 0.10 46.94
8x8 bits Wallace multiplier 398 149 0.20 0 12.00 132 11.41 0.17 13.93 2.50E+02 33.00 69 53.69 0.14 32.34
16 bits carry select adder 138 44 0.18 0 2.00 44 0.00 0.17 5.68 4.10E+04 19.00 42 4.55 0.16 6.82
16 bits carry-skip adder 128 39 0.17 0 4.00 39 0.00 0.17 1.16 1.78E+04 22.00 19 51.28 0.14 20.93
16 bits Han-Carlson adder 120 38 0.17 1 1.00 38 0.00 0.16 5.23 6.17E+04 36.00 23 39.47 0.13 22.67
8 bits carry-lookahead adder 54 24 0.61 1 9.00 16 33.33 0.11 81.64 3.43E+02 60.00 4 83.33 0.08 87.21
8 bits ripple carry adder 59 19 0.12 1 4.00 13 31.58 0.12 0.00 1.45E+02 30.00 13 31.58 0.11 6.96
8 bits Han-Carlson adder 53 18 0.12 1 3.00 13 27.78 0.12 0.00 3.77E+02 61.00 6 66.67 0.03 26.09

(a) Visual test with Lena (b) Visual test with Baboon

Visual test. Floating-point DCC on the left; in the center, the multiplier-less
BAS08 algorithm (Bouguezel et al.) is used. On the right, the BAS08 algorithm
is further approximated using approximate adders, obtaining a 25% LUT saving
(from 566 to 422 LUTs on Zynq 7000 SoC) and similar reductions in execution
time.

7th Italian Workshop on Embedded Systems 18 / 20

Conclusions

Methodology based on exact synthesis of selected k-cuts

Allows tackling a number of relevant problems in hardware
acceleration for real-time hardware tasks such as image processing
and AI in the Edge

An open source implementation is available

Area savings up to 60% at minimum error for selected circuits and up
to 25% in a realistic case study

7th Italian Workshop on Embedded Systems 19 / 20

Thank you!

Thank you for your attention!

7th Italian Workshop on Embedded Systems 20 / 20

	Introduction
	The basics

