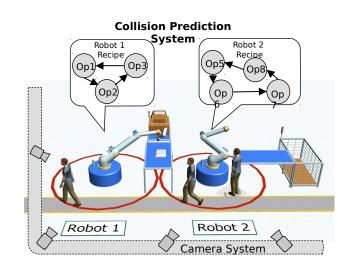


Real-time issues in smart manufacturing systems

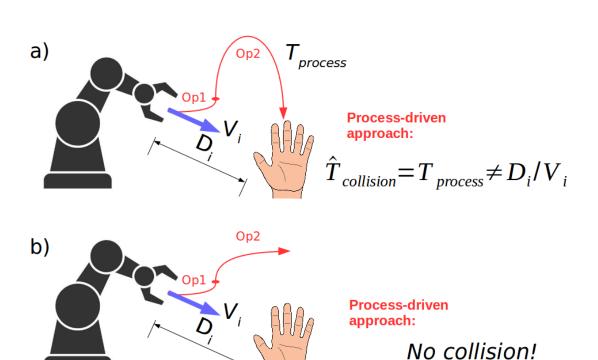
Michele Boldo, Nicola Bombieri, Stefano Centomo, Luca Geretti, Mirco De Marchi, *Davide Quaglia*, Tiziano Villa

Department of Computer Science, University of Verona, Italy name.surname@univr.it


Agenda

- Background and Motivation
- Problem Statement
- Methodology
- Experimental Setup and Results
- Conclusions and Future Work

Background


- Robots and humans share the same work environment and the human could intersect the trajectory of a robot
- Many studies exist on collision avoidance to circumvent injuries and production down times
- Common problem: to know in advance that a collision may occur within a specific time margin

Motivating examples

Process = (Op1, Op2, ...) Geometrical approach: $\hat{T}_{collision} = D_i/V_i$

Problem statement

Human-robot collision management system workflow:

GOAL: Given a working environment with *n* robots and *m* operators, monitored by multiple cameras, what is the minimum time for a (potential) collision?

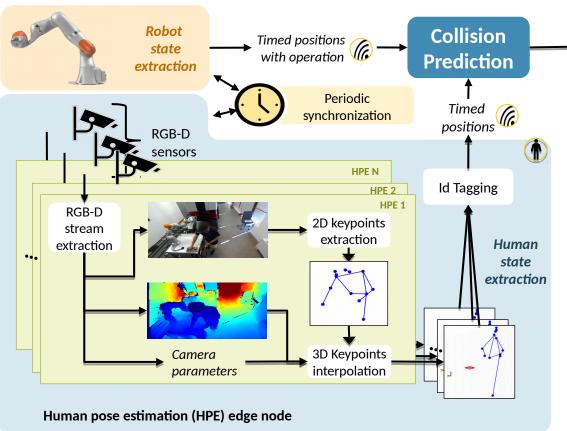
Problem statement

ASSUMPTIONS

Robot:

- Process variables and 3D position of joints are extracted from the robot firmware
- Dynamics are not known in advance but repeated and thus predictable
- Distinct operations correspond, partially, to distinct dynamics

Human:


- Human pose estimation (HPE) \rightarrow 3D position of keypoints of the body
- Timed keypoints collected with not necessarily fixed frequency

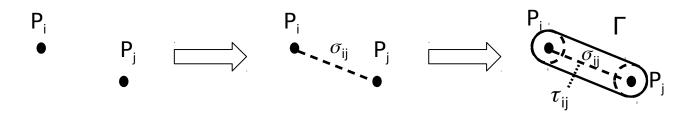
OBJECTIVE

For all human-robot body part pairs, identify the minimum time for a collision and its likelihood

Architecture

Time for the collision

Shared industrial transmission channel: standard industrial protocol like MQTT, KAFKA etc...


Markerless real-time Human Pose
Estimation: suitable for real
industrial scenarios

Methodology

Body part

- Both human and robot parts are represented as capsules
- Given P_i and P_j as keypoints/joints of human/robot, let σ_{ij} be the segment between P_i and P_j and Γ be the capsule generated by an isotropical expansion of σ_{ij} by the pre-calculated thickness τ
- thickness τ can be adapted to model different humans/robots

Methodology

- The collision between the two bodies are predicted based on the possible intersection between all the parts
- Intersection check: Given two capsules Γ' and Γ'' and their overapproximated thickness ρ' , ρ'' defined as the sum of the thickness of the segments with an uniform error measure:

No collision:
$$d(\sigma', \sigma'') > \rho' + \rho'' \Rightarrow \Gamma' \cap \Gamma'' = \emptyset$$

Collision: $d(\sigma', \sigma'') \leq \rho' + \rho'' \Rightarrow possibly \Gamma' \cap \Gamma'' \neq \emptyset$

Methodology

Prediction steps:

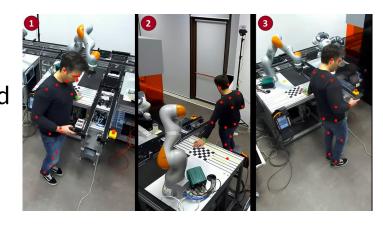
Acknowledgement

Robot Model Update

Look-ahead

Presentation message for a new body:

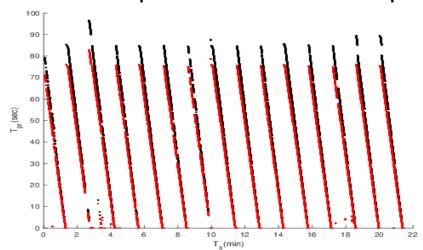
- ID
- Human/Robot
- Thickness
- Segments
- Hz (only robot)

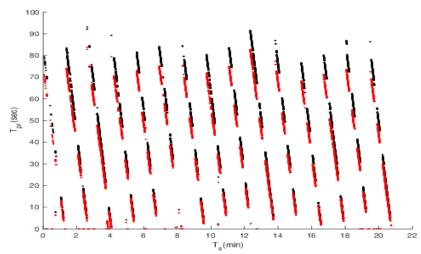

Update the history trace of the robot from the beginning of the operation

Use the history trace and the current human state to check the intersection

Experimental setup

- Realistic industrial setup: ICE Lab
- 3 HPE edge nodes
 - RGB-D camera + Edge computing board
- Robotic arm KUKA LBR IIWA R820


- Two types of scenarios:
 - Static: to test the quality of the prediction based on the quality of samples (occlusions and positions) -> Pre trained system
 - Dynamic: to simulate a real work environment -> Online learning


Experimental Results

- Lower bound
- Upper bound

- Prediction time T_{pr} :
 - Robot performs the same recipe in both the scenarios

Static: human at fixed position, 15 collisions

Dynamic: human switches from a position to another every 10s

Conclusions and Future Work

- This formal methodology is shown to be sound and effective to identify potential collisions with a manipulator
- The scalability has been demonstrated on a wide range of scenarios, also assessing the impact of occlusions
- This work is an enabling technology that aims at safety but also efficiency of the production process

• Future work:

Human pose forecasting techniques to predict the operator behavior

Thank you!

davide.quaglia@univr.it