

Automatic Generation of Simulation Scenarios for Statistical Model Checking of Real-Time Systems [*]

Toni Mancini, Igor Melatti, *Enrico Tronci*Department of Computer Science
Sapienza University of Rome, Italy
mclab.di.uniroma1.it

[*] Toni Mancini, Igor Melatti, Enrico Tronci.

Any-horizon Uniform Random Sampling and Enumeration of Constrained Scenarios for Simulation-based Formal Verification. IEEE Transactions on Software Engineering, 2021. DOI: 10.1109/TSE.2021.3109842

Simulation-based verification

Sampling events vs. sampling scenarios

Example: Apollo Lunar Module Autopilot (ALMA)

Example: ALMA Simulink model

SUV environment: ALMA

Events

Inputs from autopilot:

- Time series of module attitude change requests (Yaw, Pitch, Roll)
- Faults and disturbances
 - Additive errors on attitude sensors (current orientation: Yaw, Pitch, Roll)
 - Temporary faults on reaction jets (actuators)

Requirements

Assumptions

- No immediate undo of attitude change requests
- Noise signals chosen from portfolio and changing during time
- Jets recovery from faults with 2-3 time units
- Additional requirements to focus verification
 - No multiple jets faulty at the same time

Our approach [1]

1. Requirements on environment events via composable finite states machines (monitors)

• Defined through user-friendly Python- or Modelica-based languages

2. Scenario generators automatically computed, offering API to return:

- number of admissible scenarios of given length h (horizon)
- the i-th lex-ordered admissible scenario of length h

The above seamlessly supports all sorts of verification activities:

- statistical model checking (via uniform random sampling of admissible scenarios)
- exhaustive (possibly uniformly randomised) verification, minimising worst-case expected verification time [2]
- [1] T. Mancini et al. Any-horizon Uniform Random Sampling and Enumeration of Constrained Scenarios for Simulation-based Formal Verification. IEEE Transactions on Software Engineering, 2021. DOI: 10.1109/TSE.2021.3109842
- [2] T. Mancini, et al. On minimising the maximum expected verification time. Information Processing Letters 122, 2017

Experimental results: computation of scenario generators

SUV	SG nb.	M			$Gen(\mathcal{M})$
		assumptions monitor	constraint monitors	size of input space	time [s]
Apollo Luna Module Autopilot	1	$\mathcal{A}_{ m rj}$	<u> </u>	1769472	0.44
	2	$\mathcal{A}_{ m rj}$	1	108	0.44
	ar 3	$\mathcal{A}_{ m rj}$	1, 2	108	448.88
	4		1, 2, 3	108	247.27
	5	$egin{aligned} \mathcal{A}_{\mathrm{rj}} \ \mathcal{A}_{\mathrm{rj}} \end{aligned}$	1, 2, 3, 4	108	55.19
	6	$\mathcal{A}_{ ext{ri}}$	1, 2, 3, 5	108	188.3
	7	$rac{\mathcal{A}_{ m rj}}{\mathcal{A}_{ m s}}$	_	27	2.94
	8	$\mathcal{A}_{ ext{s}}$	6	27	1.33
	9	$\mathcal{A}_{ ext{s}}$	6, 7	27	782.2
	10	$\mathcal{A}_{ ext{ALMA}}$	1, 2, 3, 4, 6, 7	2916	837.39
				-	

_						
-	SUV	SG nb.	\mathcal{M}			$ \mathit{Gen}(\mathcal{M}) $
			assumptions monitor	constraint monitors	size of input space	time [s]
		1	${\cal A}_i$	_	5	0.19
3uc	k DC/D	C_2	\mathcal{A}_R	_	5	0.17
Cc	nverter	3	$\mathcal{A}_i owtie \mathcal{A}_R$	_	25	0.36
		4	${\cal A}_i$	1	5	0.12
		5	${\cal A}_i$	2	5	0.17
		6	\mathcal{A}_R	3	5	0.11
		7	\mathcal{A}_R	4	5	0.16
		8	$\mathcal{A}_i\bowtie\mathcal{A}_R$	5	25	37.34
		9	$\mathcal{A}_i\bowtie\mathcal{A}_R$	2, 4, 5	25	29.68
		10	$\mathcal{A}_i\bowtie\mathcal{A}_R$	2, 4, 5, 6	25	1.94
		11	$\mathcal{A}_i\bowtie\mathcal{A}_R$	1, 3, 5, 7	25	2.16

SUV	SG nb.		\mathcal{M}		$Gen(\mathcal{M})$
		assumptions monitor	constraint monitors	size of input space	time [s]
	1	\mathcal{A}_{FCS}	_	6	0.1
	2	$\mathcal{A}_{ ext{FCS}}$	1	6	7.99
Fault-Tolera	.nt 3	$\mathcal{A}_{ ext{FCS}}$	1, 3	6	4.92
Fuel Contro	$_{O}$ 4	$\mathcal{A}_{ ext{FCS}}$	1, 2	6	4.61
System	5	$\mathcal{A}_{ ext{FCS}}$	1, 4	6	6.34
•	6	\mathcal{A}_{FCS}	1, 4, 5	6	5.92
	7	\mathcal{A}_{FCS}	1, 4, 6	6	6.55

Experimental results: scenario extraction

Number of traces

Trace extraction time [s]

Apollo Lunar Module Autopilot

Thank you

Automatic Generation of Simulation Scenarios for Statistical Model Checking of Real-Time Systems [*]

Toni Mancini, Igor Melatti, Enrico Tronci Department of Computer Science | Sapienza University of Rome, Italy | mclab.di.uniroma1.it

[*] Toni Mancini, Igor Melatti, Enrico Tronci. Any-horizon Uniform Random Sampling and Enumeration of Constrained Scenarios for Simulation-based Formal Verification. IEEE Transactions on Software Engineering, 2021. DOI: 10.1109/TSE.2021.3109842