
Automatic Generation of Simulation 
Scenarios for Statistical Model Checking 

of Real-Time Systems [*]
Toni Mancini, Igor Melatti, Enrico Tronci


Department of Computer Science

Sapienza University of Rome, Italy


mclab.di.uniroma1.it

[*] Toni Mancini, Igor Melatti, Enrico Tronci.

Any-horizon Uniform Random Sampling and Enumeration of Constrained Scenarios for Simulation-based Formal Verification.

IEEE Transactions on Software Engineering, 2021. DOI: 10.1109/TSE.2021.3109842



T. Mancini, I. Melatti, E. Tronci – Autom. Generation of Simul. Scenarios for Stat. Model Checking of Real-Time Systems 2

Simulation-based verification

SUV model Requirements 
monitor

Environment 
model

pass/fail

KPI values

operational 
scenarios

Possible 
exogenous events, 
user inputs, faults, 
disturbances, etc.

Executable 
through a simulator

Safety properties, 
KPIs



T. Mancini, I. Melatti, E. Tronci – Autom. Generation of Simul. Scenarios for Stat. Model Checking of Real-Time Systems 3

Sampling events vs. sampling scenarios

nop

fail 1

fail 2

rep 1

horizont=0 t=1

rep 2

fail 1

fail 2

nop
1/5

1/5

3/5 1/3

1/3

1/3

1/1

1/1

1/5

1/5

1/5

1/5

1/5

nop

fail 1

fail 2

rep 1

horizont=0 t=1

rep 2

fail 1

fail 2

nop
1/3

1/3

1/3 1/3

1/3

1/3

1/1

1/1

1/3

1/9

1/9

1/9

1/3

Uniform sampling of 
admissible events 
does not yield a 

uniform sampling of 
admissible scenarios

Uniform sampling of 
scenarios requires 

suitable probabilities 
for occurrences of 

events at each node

Uniform sampling of scenarios yields minimum 
worst-case expected verification time [1].


Not easy to obtain.

[1] T. Mancini, et al. On minimising the maximum expected 
verification time. Information Processing Letters 122, 2017



T. Mancini, I. Melatti, E. Tronci – Autom. Generation of Simul. Scenarios for Stat. Model Checking of Real-Time Systems 4

Example: Apollo Lunar Module Autopilot (ALMA)

Apollo Command Module

Apollo Command and Service 
Modules

pitch engine

roll engine

yaw engine

Saturn V Launch Vehicle



T. Mancini, I. Melatti, E. Tronci – Autom. Generation of Simul. Scenarios for Stat. Model Checking of Real-Time Systems 5

Example: ALMA Simulink model

16 reaction jets 
(actuators)

Three signals: 
Yaw, Pitch and 
Roll sensors

Safety: Yaw, Pitch and Roll close to 0
5



T. Mancini, I. Melatti, E. Tronci – Autom. Generation of Simul. Scenarios for Stat. Model Checking of Real-Time Systems 6

SUV environment: ALMA
• Inputs from autopilot:

• Time series of module attitude change requests (Yaw, 
Pitch, Roll)


• Faults and disturbances
• Additive errors on attitude sensors (current orientation: 

Yaw, Pitch, Roll)

• Temporary faults on reaction jets (actuators)

• Assumptions
• No immediate undo of attitude change requests

• Noise signals chosen from portfolio and changing 

during time

• Jets recovery from faults with 2-3 time units


• Additional requirements to focus verification
• No multiple jets faulty at the same time

RequirementsEvents

+ +
Yaw

+
Pitch

– –
Roll

fail rep
Jet 1

+

–

+

–

Jet 2
fail

+

–{ – –

Sample 
admissible 
scenario

+

–

–

rep

… … …



T. Mancini, I. Melatti, E. Tronci – Autom. Generation of Simul. Scenarios for Stat. Model Checking of Real-Time Systems

1. Requirements on environment events via composable finite states machines (monitors)

• Defined through user-friendly Python- or Modelica-based languages

2. Scenario generators automatically computed, offering API to return:

• number of admissible scenarios of given length h (horizon)


• the i-th lex-ordered admissible scenario of length h


The above seamlessly supports all sorts of verification activities:
• statistical model checking (via uniform random sampling of admissible scenarios)

• exhaustive (possibly uniformly randomised) verification, minimising worst-case expected 

verification time [2]

7

Our approach [1]

[1] T. Mancini et al. Any-horizon Uniform Random Sampling and Enumeration of Constrained Scenarios for Simulation-based Formal 
Verification. IEEE Transactions on Software Engineering, 2021. DOI: 10.1109/TSE.2021.3109842

[2] T. Mancini, et al. On minimising the maximum expected verification time. Information Processing Letters 122, 2017



T. Mancini, I. Melatti, E. Tronci – Autom. Generation of Simul. Scenarios for Stat. Model Checking of Real-Time Systems 8

Experimental results: computation of 
scenario generators

This article appears in IEEE Transactions on Software Engineering, 2021. DOI: 10.1109/TSE.2021.3109842 8

4.2 Computation of Scenario Generators

In this section we show experimental results about genera-
tion of SGs associated to our case studies. Our Python/C
hybrid implementation allows users to define monitors
in different convenient ways: either using concise object-
oriented Python code (one of the best known and simplest to
use general-purpose programming languages), or via stan-
dard Functional Mock-up Unit (FMU) objects. The latter are
opaque binary objects defining dynamical systems accord-
ing to the Functional Mock-up Interface (FMI) open stan-
dard for model exchange. As such, FMUs can be automat-
ically generated from 100+ different simulation platforms,
including Modelica simulators (also open source implemen-
tations via, e.g., [60]), Mathworks Stateflow/Simulink, and
SBML (via, e.g., the tool in [41]).

Our SG computing software expects a monitor object
(either a Python object or an FMU, with other languages/-
formats that could be similarly supported) implementing a
few API functions (mainly, a function returning the input
values admissible in the current monitor state and one
performing a transition from the current state given an
admissible input value). Such functions can also be easily
provided by the user as to define a conjoined monitor
of other monitors. Our implementation computes SGs by
performing a Depth-First Search (DFS) on the input monitor
treated as a black box. This means it needs to access only
the monitor initial state and input space, and to repeatedly
invoke the monitor transition function (and get the resulting
states, even if as opaque objects). Saving and restoring
monitor states during search is implemented either within
our software (for Python-defined monitors) or by exploiting
the FMI API (for FMU-defined monitors, for which we used
the implementation in [60]).

In the following experiments, we defined our monitors
in Python. All computations were run on single cores of
Intel(R) i7-4930K computers @ 3.40 GHz with 64 GB RAM.

Table 4 shows, for each SUV and each monitor M
(defining contract assumptions satisfying the given filter
conditions), the number of inputs of M (column “size of
input space”) as well as the time (in seconds) needed to
compute Gen(M) (column “time”).

The table shows that computation of the SGs is very
efficient. This is also because the decomposition properties
of monitors can be often exploited (see Remarks 1 and 3).
For example, the ALMA SG number 1 has been computed as
a tuple of 19 sub-SGs, (Genr1 , . . . ,Genr3 ,Genj1 , . . . ,Genj16):
Genr1 , . . . ,Genr3 are three identical SGs associated to the
assumption subspace of the rotation commands along each
axis, and Genj1 , . . . ,Genj16 are 16 identical SGs, each one as-
sociated to the assumption subspace of a single reaction jet.
No combination among such 19 (independent) SGs needs
to be actually computed in order to extract the associated
traces (Remark 3), hence the computation time of whole SG
is the overall time to compute one SG of each kind.

Clearly, when sub-monitors are defined which span
multiple assumption subspaces, the SG computation may
be more expensive. For example, to compute ALMA SGs
number 2–6, we need to actually conjoin the 16 above single-
jet SGs; and, to compute SGs number 8–9 we need to conjoin
3 identical SGs, each one defining the assumption subspace

SUV SG nb. M Gen(M)

assumptions
monitor

constraint
monitors

size of input
space

time [s]

FCS 1 AFCS – 6 0.1
2 AFCS 1 6 7.99
3 AFCS 1, 3 6 4.92
4 AFCS 1, 2 6 4.61
5 AFCS 1, 4 6 6.34
6 AFCS 1, 4, 5 6 5.92
7 AFCS 1, 4, 6 6 6.55

BDC 1 Ai – 5 0.19
2 AR – 5 0.17
3 Ai ./ AR – 25 0.36
4 Ai 1 5 0.12
5 Ai 2 5 0.17
6 AR 3 5 0.11
7 AR 4 5 0.16
8 Ai ./ AR 5 25 37.34
9 Ai ./ AR 2, 4, 5 25 29.68
10 Ai ./ AR 2, 4, 5, 6 25 1.94
11 Ai ./ AR 1, 3, 5, 7 25 2.16

ALMA 1 Arj – 1 769 472 0.44
2 Arj 1 108 0.44
3 Arj 1, 2 108 448.88
4 Arj 1, 2, 3 108 247.27
5 Arj 1, 2, 3, 4 108 55.19
6 Arj 1, 2, 3, 5 108 188.3
7 As – 27 2.94
8 As 6 27 1.33
9 As 6, 7 27 782.2
10 AALMA 1, 2, 3, 4, 6, 7 2916 837.39

Table 4: Computation times of Scenario Generators (SGs).

of the noise signal for each sensor, before conjoining the
monitor defining constraint 6. On the other hand, the ALMA
SG number 10 is never computed as a whole, but is defined
as the pair of SGs number 5 and number 9 (hence, again its
computation time is the sum of the computation times of
two sub-SGs).

Overall, Table 4 shows that, even when we need to con-
join multiple sub-SGs because of the presence of constraint
monitors spanning several assumption subspaces, the overall
computation times are negligible when compared with the time
needed to perform any kind of simulation-based verification
of the SUV. As an example, the time to compute the most
expensive SG in Table 4 (number 10) equals the time to
simulate just a few input traces of the Simulink ALMA
SUV model (e.g., less than 50 traces for 200 t.u. each, since
simulating each of them takes around 20 seconds).

4.3 Index-based trace extraction from Scenario Gener-
ators
The decomposed representation of an SG as a tuple of sub-
SGs is also exploited when extracting traces, by relying on
the equivalences of Remark 3 when applicable. Figure 3
shows the efficiency and scalability of our monitor-based
approach to scenario generation for simulation-based ver-
ification of contracts for our CPSs. Namely, for each SG
Gen(M) reported in Table 4 and for different values for the
time horizon h, the following statistics are plotted.

Number of traces. This is the overall number of traces
of length h entailed by Gen(M), as returned by function
nb_traces of Algorithm 1. Unsurprisingly, especially for SGs

This article appears in IEEE Transactions on Software Engineering, 2021. DOI: 10.1109/TSE.2021.3109842 8

4.2 Computation of Scenario Generators

In this section we show experimental results about genera-
tion of SGs associated to our case studies. Our Python/C
hybrid implementation allows users to define monitors
in different convenient ways: either using concise object-
oriented Python code (one of the best known and simplest to
use general-purpose programming languages), or via stan-
dard Functional Mock-up Unit (FMU) objects. The latter are
opaque binary objects defining dynamical systems accord-
ing to the Functional Mock-up Interface (FMI) open stan-
dard for model exchange. As such, FMUs can be automat-
ically generated from 100+ different simulation platforms,
including Modelica simulators (also open source implemen-
tations via, e.g., [60]), Mathworks Stateflow/Simulink, and
SBML (via, e.g., the tool in [41]).

Our SG computing software expects a monitor object
(either a Python object or an FMU, with other languages/-
formats that could be similarly supported) implementing a
few API functions (mainly, a function returning the input
values admissible in the current monitor state and one
performing a transition from the current state given an
admissible input value). Such functions can also be easily
provided by the user as to define a conjoined monitor
of other monitors. Our implementation computes SGs by
performing a Depth-First Search (DFS) on the input monitor
treated as a black box. This means it needs to access only
the monitor initial state and input space, and to repeatedly
invoke the monitor transition function (and get the resulting
states, even if as opaque objects). Saving and restoring
monitor states during search is implemented either within
our software (for Python-defined monitors) or by exploiting
the FMI API (for FMU-defined monitors, for which we used
the implementation in [60]).

In the following experiments, we defined our monitors
in Python. All computations were run on single cores of
Intel(R) i7-4930K computers @ 3.40 GHz with 64 GB RAM.

Table 4 shows, for each SUV and each monitor M
(defining contract assumptions satisfying the given filter
conditions), the number of inputs of M (column “size of
input space”) as well as the time (in seconds) needed to
compute Gen(M) (column “time”).

The table shows that computation of the SGs is very
efficient. This is also because the decomposition properties
of monitors can be often exploited (see Remarks 1 and 3).
For example, the ALMA SG number 1 has been computed as
a tuple of 19 sub-SGs, (Genr1 , . . . ,Genr3 ,Genj1 , . . . ,Genj16):
Genr1 , . . . ,Genr3 are three identical SGs associated to the
assumption subspace of the rotation commands along each
axis, and Genj1 , . . . ,Genj16 are 16 identical SGs, each one as-
sociated to the assumption subspace of a single reaction jet.
No combination among such 19 (independent) SGs needs
to be actually computed in order to extract the associated
traces (Remark 3), hence the computation time of whole SG
is the overall time to compute one SG of each kind.

Clearly, when sub-monitors are defined which span
multiple assumption subspaces, the SG computation may
be more expensive. For example, to compute ALMA SGs
number 2–6, we need to actually conjoin the 16 above single-
jet SGs; and, to compute SGs number 8–9 we need to conjoin
3 identical SGs, each one defining the assumption subspace

SUV SG nb. M Gen(M)

assumptions
monitor

constraint
monitors

size of input
space

time [s]

FCS 1 AFCS – 6 0.1
2 AFCS 1 6 7.99
3 AFCS 1, 3 6 4.92
4 AFCS 1, 2 6 4.61
5 AFCS 1, 4 6 6.34
6 AFCS 1, 4, 5 6 5.92
7 AFCS 1, 4, 6 6 6.55

BDC 1 Ai – 5 0.19
2 AR – 5 0.17
3 Ai ./ AR – 25 0.36
4 Ai 1 5 0.12
5 Ai 2 5 0.17
6 AR 3 5 0.11
7 AR 4 5 0.16
8 Ai ./ AR 5 25 37.34
9 Ai ./ AR 2, 4, 5 25 29.68
10 Ai ./ AR 2, 4, 5, 6 25 1.94
11 Ai ./ AR 1, 3, 5, 7 25 2.16

ALMA 1 Arj – 1 769 472 0.44
2 Arj 1 108 0.44
3 Arj 1, 2 108 448.88
4 Arj 1, 2, 3 108 247.27
5 Arj 1, 2, 3, 4 108 55.19
6 Arj 1, 2, 3, 5 108 188.3
7 As – 27 2.94
8 As 6 27 1.33
9 As 6, 7 27 782.2
10 AALMA 1, 2, 3, 4, 6, 7 2916 837.39

Table 4: Computation times of Scenario Generators (SGs).

of the noise signal for each sensor, before conjoining the
monitor defining constraint 6. On the other hand, the ALMA
SG number 10 is never computed as a whole, but is defined
as the pair of SGs number 5 and number 9 (hence, again its
computation time is the sum of the computation times of
two sub-SGs).

Overall, Table 4 shows that, even when we need to con-
join multiple sub-SGs because of the presence of constraint
monitors spanning several assumption subspaces, the overall
computation times are negligible when compared with the time
needed to perform any kind of simulation-based verification
of the SUV. As an example, the time to compute the most
expensive SG in Table 4 (number 10) equals the time to
simulate just a few input traces of the Simulink ALMA
SUV model (e.g., less than 50 traces for 200 t.u. each, since
simulating each of them takes around 20 seconds).

4.3 Index-based trace extraction from Scenario Gener-
ators
The decomposed representation of an SG as a tuple of sub-
SGs is also exploited when extracting traces, by relying on
the equivalences of Remark 3 when applicable. Figure 3
shows the efficiency and scalability of our monitor-based
approach to scenario generation for simulation-based ver-
ification of contracts for our CPSs. Namely, for each SG
Gen(M) reported in Table 4 and for different values for the
time horizon h, the following statistics are plotted.

Number of traces. This is the overall number of traces
of length h entailed by Gen(M), as returned by function
nb_traces of Algorithm 1. Unsurprisingly, especially for SGs

Apollo Lunar 
Module 

Autopilot

This article appears in IEEE Transactions on Software Engineering, 2021. DOI: 10.1109/TSE.2021.3109842 8

4.2 Computation of Scenario Generators

In this section we show experimental results about genera-
tion of SGs associated to our case studies. Our Python/C
hybrid implementation allows users to define monitors
in different convenient ways: either using concise object-
oriented Python code (one of the best known and simplest to
use general-purpose programming languages), or via stan-
dard Functional Mock-up Unit (FMU) objects. The latter are
opaque binary objects defining dynamical systems accord-
ing to the Functional Mock-up Interface (FMI) open stan-
dard for model exchange. As such, FMUs can be automat-
ically generated from 100+ different simulation platforms,
including Modelica simulators (also open source implemen-
tations via, e.g., [60]), Mathworks Stateflow/Simulink, and
SBML (via, e.g., the tool in [41]).

Our SG computing software expects a monitor object
(either a Python object or an FMU, with other languages/-
formats that could be similarly supported) implementing a
few API functions (mainly, a function returning the input
values admissible in the current monitor state and one
performing a transition from the current state given an
admissible input value). Such functions can also be easily
provided by the user as to define a conjoined monitor
of other monitors. Our implementation computes SGs by
performing a Depth-First Search (DFS) on the input monitor
treated as a black box. This means it needs to access only
the monitor initial state and input space, and to repeatedly
invoke the monitor transition function (and get the resulting
states, even if as opaque objects). Saving and restoring
monitor states during search is implemented either within
our software (for Python-defined monitors) or by exploiting
the FMI API (for FMU-defined monitors, for which we used
the implementation in [60]).

In the following experiments, we defined our monitors
in Python. All computations were run on single cores of
Intel(R) i7-4930K computers @ 3.40 GHz with 64 GB RAM.

Table 4 shows, for each SUV and each monitor M
(defining contract assumptions satisfying the given filter
conditions), the number of inputs of M (column “size of
input space”) as well as the time (in seconds) needed to
compute Gen(M) (column “time”).

The table shows that computation of the SGs is very
efficient. This is also because the decomposition properties
of monitors can be often exploited (see Remarks 1 and 3).
For example, the ALMA SG number 1 has been computed as
a tuple of 19 sub-SGs, (Genr1 , . . . ,Genr3 ,Genj1 , . . . ,Genj16):
Genr1 , . . . ,Genr3 are three identical SGs associated to the
assumption subspace of the rotation commands along each
axis, and Genj1 , . . . ,Genj16 are 16 identical SGs, each one as-
sociated to the assumption subspace of a single reaction jet.
No combination among such 19 (independent) SGs needs
to be actually computed in order to extract the associated
traces (Remark 3), hence the computation time of whole SG
is the overall time to compute one SG of each kind.

Clearly, when sub-monitors are defined which span
multiple assumption subspaces, the SG computation may
be more expensive. For example, to compute ALMA SGs
number 2–6, we need to actually conjoin the 16 above single-
jet SGs; and, to compute SGs number 8–9 we need to conjoin
3 identical SGs, each one defining the assumption subspace

SUV SG nb. M Gen(M)

assumptions
monitor

constraint
monitors

size of input
space

time [s]

FCS 1 AFCS – 6 0.1
2 AFCS 1 6 7.99
3 AFCS 1, 3 6 4.92
4 AFCS 1, 2 6 4.61
5 AFCS 1, 4 6 6.34
6 AFCS 1, 4, 5 6 5.92
7 AFCS 1, 4, 6 6 6.55

BDC 1 Ai – 5 0.19
2 AR – 5 0.17
3 Ai ./ AR – 25 0.36
4 Ai 1 5 0.12
5 Ai 2 5 0.17
6 AR 3 5 0.11
7 AR 4 5 0.16
8 Ai ./ AR 5 25 37.34
9 Ai ./ AR 2, 4, 5 25 29.68
10 Ai ./ AR 2, 4, 5, 6 25 1.94
11 Ai ./ AR 1, 3, 5, 7 25 2.16

ALMA 1 Arj – 1 769 472 0.44
2 Arj 1 108 0.44
3 Arj 1, 2 108 448.88
4 Arj 1, 2, 3 108 247.27
5 Arj 1, 2, 3, 4 108 55.19
6 Arj 1, 2, 3, 5 108 188.3
7 As – 27 2.94
8 As 6 27 1.33
9 As 6, 7 27 782.2
10 AALMA 1, 2, 3, 4, 6, 7 2916 837.39

Table 4: Computation times of Scenario Generators (SGs).

of the noise signal for each sensor, before conjoining the
monitor defining constraint 6. On the other hand, the ALMA
SG number 10 is never computed as a whole, but is defined
as the pair of SGs number 5 and number 9 (hence, again its
computation time is the sum of the computation times of
two sub-SGs).

Overall, Table 4 shows that, even when we need to con-
join multiple sub-SGs because of the presence of constraint
monitors spanning several assumption subspaces, the overall
computation times are negligible when compared with the time
needed to perform any kind of simulation-based verification
of the SUV. As an example, the time to compute the most
expensive SG in Table 4 (number 10) equals the time to
simulate just a few input traces of the Simulink ALMA
SUV model (e.g., less than 50 traces for 200 t.u. each, since
simulating each of them takes around 20 seconds).

4.3 Index-based trace extraction from Scenario Gener-
ators
The decomposed representation of an SG as a tuple of sub-
SGs is also exploited when extracting traces, by relying on
the equivalences of Remark 3 when applicable. Figure 3
shows the efficiency and scalability of our monitor-based
approach to scenario generation for simulation-based ver-
ification of contracts for our CPSs. Namely, for each SG
Gen(M) reported in Table 4 and for different values for the
time horizon h, the following statistics are plotted.

Number of traces. This is the overall number of traces
of length h entailed by Gen(M), as returned by function
nb_traces of Algorithm 1. Unsurprisingly, especially for SGs

This article appears in IEEE Transactions on Software Engineering, 2021. DOI: 10.1109/TSE.2021.3109842 8

4.2 Computation of Scenario Generators

In this section we show experimental results about genera-
tion of SGs associated to our case studies. Our Python/C
hybrid implementation allows users to define monitors
in different convenient ways: either using concise object-
oriented Python code (one of the best known and simplest to
use general-purpose programming languages), or via stan-
dard Functional Mock-up Unit (FMU) objects. The latter are
opaque binary objects defining dynamical systems accord-
ing to the Functional Mock-up Interface (FMI) open stan-
dard for model exchange. As such, FMUs can be automat-
ically generated from 100+ different simulation platforms,
including Modelica simulators (also open source implemen-
tations via, e.g., [60]), Mathworks Stateflow/Simulink, and
SBML (via, e.g., the tool in [41]).

Our SG computing software expects a monitor object
(either a Python object or an FMU, with other languages/-
formats that could be similarly supported) implementing a
few API functions (mainly, a function returning the input
values admissible in the current monitor state and one
performing a transition from the current state given an
admissible input value). Such functions can also be easily
provided by the user as to define a conjoined monitor
of other monitors. Our implementation computes SGs by
performing a Depth-First Search (DFS) on the input monitor
treated as a black box. This means it needs to access only
the monitor initial state and input space, and to repeatedly
invoke the monitor transition function (and get the resulting
states, even if as opaque objects). Saving and restoring
monitor states during search is implemented either within
our software (for Python-defined monitors) or by exploiting
the FMI API (for FMU-defined monitors, for which we used
the implementation in [60]).

In the following experiments, we defined our monitors
in Python. All computations were run on single cores of
Intel(R) i7-4930K computers @ 3.40 GHz with 64 GB RAM.

Table 4 shows, for each SUV and each monitor M
(defining contract assumptions satisfying the given filter
conditions), the number of inputs of M (column “size of
input space”) as well as the time (in seconds) needed to
compute Gen(M) (column “time”).

The table shows that computation of the SGs is very
efficient. This is also because the decomposition properties
of monitors can be often exploited (see Remarks 1 and 3).
For example, the ALMA SG number 1 has been computed as
a tuple of 19 sub-SGs, (Genr1 , . . . ,Genr3 ,Genj1 , . . . ,Genj16):
Genr1 , . . . ,Genr3 are three identical SGs associated to the
assumption subspace of the rotation commands along each
axis, and Genj1 , . . . ,Genj16 are 16 identical SGs, each one as-
sociated to the assumption subspace of a single reaction jet.
No combination among such 19 (independent) SGs needs
to be actually computed in order to extract the associated
traces (Remark 3), hence the computation time of whole SG
is the overall time to compute one SG of each kind.

Clearly, when sub-monitors are defined which span
multiple assumption subspaces, the SG computation may
be more expensive. For example, to compute ALMA SGs
number 2–6, we need to actually conjoin the 16 above single-
jet SGs; and, to compute SGs number 8–9 we need to conjoin
3 identical SGs, each one defining the assumption subspace

SUV SG nb. M Gen(M)

assumptions
monitor

constraint
monitors

size of input
space

time [s]

FCS 1 AFCS – 6 0.1
2 AFCS 1 6 7.99
3 AFCS 1, 3 6 4.92
4 AFCS 1, 2 6 4.61
5 AFCS 1, 4 6 6.34
6 AFCS 1, 4, 5 6 5.92
7 AFCS 1, 4, 6 6 6.55

BDC 1 Ai – 5 0.19
2 AR – 5 0.17
3 Ai ./ AR – 25 0.36
4 Ai 1 5 0.12
5 Ai 2 5 0.17
6 AR 3 5 0.11
7 AR 4 5 0.16
8 Ai ./ AR 5 25 37.34
9 Ai ./ AR 2, 4, 5 25 29.68
10 Ai ./ AR 2, 4, 5, 6 25 1.94
11 Ai ./ AR 1, 3, 5, 7 25 2.16

ALMA 1 Arj – 1 769 472 0.44
2 Arj 1 108 0.44
3 Arj 1, 2 108 448.88
4 Arj 1, 2, 3 108 247.27
5 Arj 1, 2, 3, 4 108 55.19
6 Arj 1, 2, 3, 5 108 188.3
7 As – 27 2.94
8 As 6 27 1.33
9 As 6, 7 27 782.2
10 AALMA 1, 2, 3, 4, 6, 7 2916 837.39

Table 4: Computation times of Scenario Generators (SGs).

of the noise signal for each sensor, before conjoining the
monitor defining constraint 6. On the other hand, the ALMA
SG number 10 is never computed as a whole, but is defined
as the pair of SGs number 5 and number 9 (hence, again its
computation time is the sum of the computation times of
two sub-SGs).

Overall, Table 4 shows that, even when we need to con-
join multiple sub-SGs because of the presence of constraint
monitors spanning several assumption subspaces, the overall
computation times are negligible when compared with the time
needed to perform any kind of simulation-based verification
of the SUV. As an example, the time to compute the most
expensive SG in Table 4 (number 10) equals the time to
simulate just a few input traces of the Simulink ALMA
SUV model (e.g., less than 50 traces for 200 t.u. each, since
simulating each of them takes around 20 seconds).

4.3 Index-based trace extraction from Scenario Gener-
ators
The decomposed representation of an SG as a tuple of sub-
SGs is also exploited when extracting traces, by relying on
the equivalences of Remark 3 when applicable. Figure 3
shows the efficiency and scalability of our monitor-based
approach to scenario generation for simulation-based ver-
ification of contracts for our CPSs. Namely, for each SG
Gen(M) reported in Table 4 and for different values for the
time horizon h, the following statistics are plotted.

Number of traces. This is the overall number of traces
of length h entailed by Gen(M), as returned by function
nb_traces of Algorithm 1. Unsurprisingly, especially for SGs

Fault-Tolerant 
Fuel Control 

System

This article appears in IEEE Transactions on Software Engineering, 2021. DOI: 10.1109/TSE.2021.3109842 8

4.2 Computation of Scenario Generators

In this section we show experimental results about genera-
tion of SGs associated to our case studies. Our Python/C
hybrid implementation allows users to define monitors
in different convenient ways: either using concise object-
oriented Python code (one of the best known and simplest to
use general-purpose programming languages), or via stan-
dard Functional Mock-up Unit (FMU) objects. The latter are
opaque binary objects defining dynamical systems accord-
ing to the Functional Mock-up Interface (FMI) open stan-
dard for model exchange. As such, FMUs can be automat-
ically generated from 100+ different simulation platforms,
including Modelica simulators (also open source implemen-
tations via, e.g., [60]), Mathworks Stateflow/Simulink, and
SBML (via, e.g., the tool in [41]).

Our SG computing software expects a monitor object
(either a Python object or an FMU, with other languages/-
formats that could be similarly supported) implementing a
few API functions (mainly, a function returning the input
values admissible in the current monitor state and one
performing a transition from the current state given an
admissible input value). Such functions can also be easily
provided by the user as to define a conjoined monitor
of other monitors. Our implementation computes SGs by
performing a Depth-First Search (DFS) on the input monitor
treated as a black box. This means it needs to access only
the monitor initial state and input space, and to repeatedly
invoke the monitor transition function (and get the resulting
states, even if as opaque objects). Saving and restoring
monitor states during search is implemented either within
our software (for Python-defined monitors) or by exploiting
the FMI API (for FMU-defined monitors, for which we used
the implementation in [60]).

In the following experiments, we defined our monitors
in Python. All computations were run on single cores of
Intel(R) i7-4930K computers @ 3.40 GHz with 64 GB RAM.

Table 4 shows, for each SUV and each monitor M
(defining contract assumptions satisfying the given filter
conditions), the number of inputs of M (column “size of
input space”) as well as the time (in seconds) needed to
compute Gen(M) (column “time”).

The table shows that computation of the SGs is very
efficient. This is also because the decomposition properties
of monitors can be often exploited (see Remarks 1 and 3).
For example, the ALMA SG number 1 has been computed as
a tuple of 19 sub-SGs, (Genr1 , . . . ,Genr3 ,Genj1 , . . . ,Genj16):
Genr1 , . . . ,Genr3 are three identical SGs associated to the
assumption subspace of the rotation commands along each
axis, and Genj1 , . . . ,Genj16 are 16 identical SGs, each one as-
sociated to the assumption subspace of a single reaction jet.
No combination among such 19 (independent) SGs needs
to be actually computed in order to extract the associated
traces (Remark 3), hence the computation time of whole SG
is the overall time to compute one SG of each kind.

Clearly, when sub-monitors are defined which span
multiple assumption subspaces, the SG computation may
be more expensive. For example, to compute ALMA SGs
number 2–6, we need to actually conjoin the 16 above single-
jet SGs; and, to compute SGs number 8–9 we need to conjoin
3 identical SGs, each one defining the assumption subspace

SUV SG nb. M Gen(M)

assumptions
monitor

constraint
monitors

size of input
space

time [s]

FCS 1 AFCS – 6 0.1
2 AFCS 1 6 7.99
3 AFCS 1, 3 6 4.92
4 AFCS 1, 2 6 4.61
5 AFCS 1, 4 6 6.34
6 AFCS 1, 4, 5 6 5.92
7 AFCS 1, 4, 6 6 6.55

BDC 1 Ai – 5 0.19
2 AR – 5 0.17
3 Ai ./ AR – 25 0.36
4 Ai 1 5 0.12
5 Ai 2 5 0.17
6 AR 3 5 0.11
7 AR 4 5 0.16
8 Ai ./ AR 5 25 37.34
9 Ai ./ AR 2, 4, 5 25 29.68
10 Ai ./ AR 2, 4, 5, 6 25 1.94
11 Ai ./ AR 1, 3, 5, 7 25 2.16

ALMA 1 Arj – 1 769 472 0.44
2 Arj 1 108 0.44
3 Arj 1, 2 108 448.88
4 Arj 1, 2, 3 108 247.27
5 Arj 1, 2, 3, 4 108 55.19
6 Arj 1, 2, 3, 5 108 188.3
7 As – 27 2.94
8 As 6 27 1.33
9 As 6, 7 27 782.2
10 AALMA 1, 2, 3, 4, 6, 7 2916 837.39

Table 4: Computation times of Scenario Generators (SGs).

of the noise signal for each sensor, before conjoining the
monitor defining constraint 6. On the other hand, the ALMA
SG number 10 is never computed as a whole, but is defined
as the pair of SGs number 5 and number 9 (hence, again its
computation time is the sum of the computation times of
two sub-SGs).

Overall, Table 4 shows that, even when we need to con-
join multiple sub-SGs because of the presence of constraint
monitors spanning several assumption subspaces, the overall
computation times are negligible when compared with the time
needed to perform any kind of simulation-based verification
of the SUV. As an example, the time to compute the most
expensive SG in Table 4 (number 10) equals the time to
simulate just a few input traces of the Simulink ALMA
SUV model (e.g., less than 50 traces for 200 t.u. each, since
simulating each of them takes around 20 seconds).

4.3 Index-based trace extraction from Scenario Gener-
ators
The decomposed representation of an SG as a tuple of sub-
SGs is also exploited when extracting traces, by relying on
the equivalences of Remark 3 when applicable. Figure 3
shows the efficiency and scalability of our monitor-based
approach to scenario generation for simulation-based ver-
ification of contracts for our CPSs. Namely, for each SG
Gen(M) reported in Table 4 and for different values for the
time horizon h, the following statistics are plotted.

Number of traces. This is the overall number of traces
of length h entailed by Gen(M), as returned by function
nb_traces of Algorithm 1. Unsurprisingly, especially for SGs

This article appears in IEEE Transactions on Software Engineering, 2021. DOI: 10.1109/TSE.2021.3109842 8

4.2 Computation of Scenario Generators

In this section we show experimental results about genera-
tion of SGs associated to our case studies. Our Python/C
hybrid implementation allows users to define monitors
in different convenient ways: either using concise object-
oriented Python code (one of the best known and simplest to
use general-purpose programming languages), or via stan-
dard Functional Mock-up Unit (FMU) objects. The latter are
opaque binary objects defining dynamical systems accord-
ing to the Functional Mock-up Interface (FMI) open stan-
dard for model exchange. As such, FMUs can be automat-
ically generated from 100+ different simulation platforms,
including Modelica simulators (also open source implemen-
tations via, e.g., [60]), Mathworks Stateflow/Simulink, and
SBML (via, e.g., the tool in [41]).

Our SG computing software expects a monitor object
(either a Python object or an FMU, with other languages/-
formats that could be similarly supported) implementing a
few API functions (mainly, a function returning the input
values admissible in the current monitor state and one
performing a transition from the current state given an
admissible input value). Such functions can also be easily
provided by the user as to define a conjoined monitor
of other monitors. Our implementation computes SGs by
performing a Depth-First Search (DFS) on the input monitor
treated as a black box. This means it needs to access only
the monitor initial state and input space, and to repeatedly
invoke the monitor transition function (and get the resulting
states, even if as opaque objects). Saving and restoring
monitor states during search is implemented either within
our software (for Python-defined monitors) or by exploiting
the FMI API (for FMU-defined monitors, for which we used
the implementation in [60]).

In the following experiments, we defined our monitors
in Python. All computations were run on single cores of
Intel(R) i7-4930K computers @ 3.40 GHz with 64 GB RAM.

Table 4 shows, for each SUV and each monitor M
(defining contract assumptions satisfying the given filter
conditions), the number of inputs of M (column “size of
input space”) as well as the time (in seconds) needed to
compute Gen(M) (column “time”).

The table shows that computation of the SGs is very
efficient. This is also because the decomposition properties
of monitors can be often exploited (see Remarks 1 and 3).
For example, the ALMA SG number 1 has been computed as
a tuple of 19 sub-SGs, (Genr1 , . . . ,Genr3 ,Genj1 , . . . ,Genj16):
Genr1 , . . . ,Genr3 are three identical SGs associated to the
assumption subspace of the rotation commands along each
axis, and Genj1 , . . . ,Genj16 are 16 identical SGs, each one as-
sociated to the assumption subspace of a single reaction jet.
No combination among such 19 (independent) SGs needs
to be actually computed in order to extract the associated
traces (Remark 3), hence the computation time of whole SG
is the overall time to compute one SG of each kind.

Clearly, when sub-monitors are defined which span
multiple assumption subspaces, the SG computation may
be more expensive. For example, to compute ALMA SGs
number 2–6, we need to actually conjoin the 16 above single-
jet SGs; and, to compute SGs number 8–9 we need to conjoin
3 identical SGs, each one defining the assumption subspace

SUV SG nb. M Gen(M)

assumptions
monitor

constraint
monitors

size of input
space

time [s]

FCS 1 AFCS – 6 0.1
2 AFCS 1 6 7.99
3 AFCS 1, 3 6 4.92
4 AFCS 1, 2 6 4.61
5 AFCS 1, 4 6 6.34
6 AFCS 1, 4, 5 6 5.92
7 AFCS 1, 4, 6 6 6.55

BDC 1 Ai – 5 0.19
2 AR – 5 0.17
3 Ai ./ AR – 25 0.36
4 Ai 1 5 0.12
5 Ai 2 5 0.17
6 AR 3 5 0.11
7 AR 4 5 0.16
8 Ai ./ AR 5 25 37.34
9 Ai ./ AR 2, 4, 5 25 29.68
10 Ai ./ AR 2, 4, 5, 6 25 1.94
11 Ai ./ AR 1, 3, 5, 7 25 2.16

ALMA 1 Arj – 1 769 472 0.44
2 Arj 1 108 0.44
3 Arj 1, 2 108 448.88
4 Arj 1, 2, 3 108 247.27
5 Arj 1, 2, 3, 4 108 55.19
6 Arj 1, 2, 3, 5 108 188.3
7 As – 27 2.94
8 As 6 27 1.33
9 As 6, 7 27 782.2
10 AALMA 1, 2, 3, 4, 6, 7 2916 837.39

Table 4: Computation times of Scenario Generators (SGs).

of the noise signal for each sensor, before conjoining the
monitor defining constraint 6. On the other hand, the ALMA
SG number 10 is never computed as a whole, but is defined
as the pair of SGs number 5 and number 9 (hence, again its
computation time is the sum of the computation times of
two sub-SGs).

Overall, Table 4 shows that, even when we need to con-
join multiple sub-SGs because of the presence of constraint
monitors spanning several assumption subspaces, the overall
computation times are negligible when compared with the time
needed to perform any kind of simulation-based verification
of the SUV. As an example, the time to compute the most
expensive SG in Table 4 (number 10) equals the time to
simulate just a few input traces of the Simulink ALMA
SUV model (e.g., less than 50 traces for 200 t.u. each, since
simulating each of them takes around 20 seconds).

4.3 Index-based trace extraction from Scenario Gener-
ators
The decomposed representation of an SG as a tuple of sub-
SGs is also exploited when extracting traces, by relying on
the equivalences of Remark 3 when applicable. Figure 3
shows the efficiency and scalability of our monitor-based
approach to scenario generation for simulation-based ver-
ification of contracts for our CPSs. Namely, for each SG
Gen(M) reported in Table 4 and for different values for the
time horizon h, the following statistics are plotted.

Number of traces. This is the overall number of traces
of length h entailed by Gen(M), as returned by function
nb_traces of Algorithm 1. Unsurprisingly, especially for SGs

Buck DC/DC 
Converter



T. Mancini, I. Melatti, E. Tronci – Autom. Generation of Simul. Scenarios for Stat. Model Checking of Real-Time Systems 9

Experimental results: scenario extraction

This article appears in IEEE Transactions on Software Engineering, 2021. DOI: 10.1109/TSE.2021.3109842 10

1010
1020
1030
1040
1050
1060
1070
1080

50 100 200 400
horizon

Number of traces

10�5

10�4

10�3

10�2

10�1

100

101

50 100 200 400
horizon

Trace extraction time [s]

10�50

10�40

10�30

10�20

10�10

50 100 200 400
horizon

Constraint monitors selectivity

0.00

0.25

0.50

0.75

1.00

50 100 200 400
horizon

SG selectivity

Fuel Control System

1020

1040

1060

1080

10100

10120

10140

50 100 200 400
horizon

Number of traces

10�5

10�4

10�3

10�2

10�1

100

101

50 100 200 400
horizon

Trace extraction time [s]

10�100

10�80

10�60

10�40

10�20

100

50 100 200 400
horizon

Constraint monitors selectivity

0.00

0.25

0.50

0.75

1.00

50 100 200 400
horizon

SG selectivity

Buck DC/DC Converter

100
10100
10200
10300
10400
10500
10600
10700
10800
10900

50 100 200
horizon

Number of traces

10�5

10�4

10�3

10�2

10�1

100

101

50 100 200
horizon

Trace extraction time [s]

10�700

10�600

10�500

10�400

10�300

10�200

10�100

100

50 100 200
horizon

Constraint monitors selectivity

0.00

0.25

0.50

0.75

1.00

50 100 200
horizon

SG selectivity

Apollo Lunar Module Digital Autopilot

Figure 3: Number of entailed traces, amortised trace extraction time (over 1000 traces), constraint monitor as well as SG
selectivity (showing savings with respect to a Markovian random walk generator in the input monitors, our baseline) for
different horizons (one curve per SG of Table 4).

in [1], [3], [6], [33], [59]. In particular, [1] falsifies a metric
temporal logic property through Monte Carlo optimisation
guided by a robustness metric defined by the property.
Although [1] does not provide a quantification of the level
of assurance achieved when no counterexample is found
(as instead SMC does), we note that the search strategy in
[1] can falsify properties that would take too long to falsify
using uniform sampling. Developing approaches that can
provide the benefits of both approaches is, to the best of our
knowledge, an open problem and an important direction for
future work.

The supervisory control problem has been introduced in
[57], [58] in a language-theoretic setting. The work in [10]
(respectively, [65]) presents a symbolic (OBDD-based) algo-
rithm for the synthesis of (optimal) supervisory controllers
for finite state systems. Since then, supervisory control the-
ory has been used in many settings, e.g., analysis of database
transaction execution [40], concurrent programs synthesis
[34], confidentiality-enforcing in security [22], model-based
system engineering [7], synthesis of control software [4],
[54]. An up to date overview is in [71]. In this article, we
use supervisory control theory through an explicit (since we

face with possibly black-box monitors) implementation of
the symbolic algorithm in [10].

6 CONCLUSIONS

In this article we focused on the (possibly uniform) random
sampling and (randomised) enumeration of constrained in-
put scenarios of any horizon for the simulation-based verifi-
cation of non-terminating Cyber-Physical Systems (CPSs).

By relying on finite state machines as a succinct, flexible,
and practical means to define constraints to be satisfied
by the System Under Verification (SUV) input scenarios
(where such constraints stem from requirements on the SUV
inputs, e.g., assumptions and a definition of its operational
environment, as well as from additional conditions aiming at
dynamically restricting the focus of the verification process,
e.g., to exercise some requirements or to counteract vacu-
ity in their satisfaction), we showed how to exploit and
combine together results from supervisory control theory
and combinatorics in order to synthesise a data structure
(Scenario Generator, SG) from which any-horizon scenarios
can be efficiently sampled (possibly uniformly at random) or
(randomly) enumerated.

Apollo Lunar Module Autopilot



Thank you
Automatic Generation of Simulation Scenarios for Statistical 

Model Checking of Real-Time Systems [*]

Toni Mancini, Igor Melatti, Enrico Tronci


Department of Computer Science | Sapienza University of Rome, Italy | mclab.di.uniroma1.it

[*] Toni Mancini, Igor Melatti, Enrico Tronci. Any-horizon Uniform Random Sampling and Enumeration of Constrained Scenarios for 
Simulation-based Formal Verification. IEEE Transactions on Software Engineering, 2021. DOI: 10.1109/TSE.2021.3109842


