Dynamic partial reconfiguration on heterogeneous embedded platforms: timing predictability

Tania Di Mascio, **Luigi Pomante**, Giacomo Valente Università degli Studi dell'Aquila

IWES, Bari 2022

Introduction

- Safety/Mission critical systems look at Heterogeneous
 Reconfigurable Computer Architectures (HRCAs) as they enable
 - low SWaP (size, weight, and power) design solutions
 - high performance at acceptable power consumption
 - dependability
- HRCAs are SoCs containing microprocessors, dedicated accelerators, and one or more RCAs [1]
 - Xilinx/AMD Zynq7000, Zynq Ultrascale+, Versal
 - Altera/Intel Cyclone V SoC
 - Microsemi Fusion

References

[1] C. Insaurralde, "Reconfigurable computer architectures for dynamically adaptable avionics systems," in IEEE Aerospace and Electronic Systems Magazine, vol. 30, no. 9, pp. 46-53, Sept. 2015, doi: 10.1109/MAES.2015.140077.

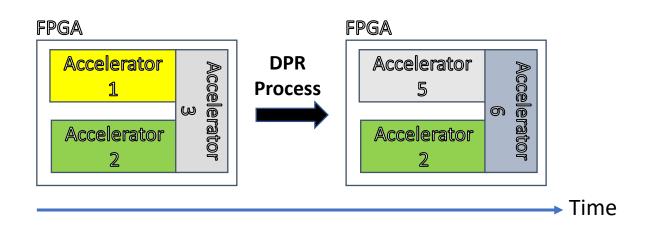
Motivational examples involving HRCAs

Low SWaP – High Performance

- Robust real-time tracking on low-cost UAV platform [2]
 - Real-time automatic detection task acceleration using "microprocessor + FPGA" as HRCA
 - When necessary, the task is able to issue flight path changes to an UAV autopilot

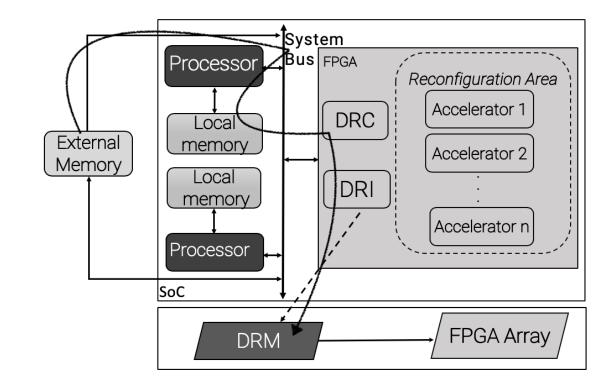
Dependability

- Balancing High-Performance and safety in nanosatellites [3]
 - Trade-off performance and reliability at runtime using
 Dynamic Partial Reconfiguration on HRCA Zynq Ultrascale+
 - It considers configuration memory scrubbing and triple module redundancy


References

[2] G. Wigley and M. Jasiunas, "A low cost, high performance reconfigurable computing based unmanned aerial vehicle," 2006 IEEE Aerospace Conference, 2006, pp. 13 pp.-, doi: 10.1109/AERO.2006.1655800.

[3] Gantel, L.; Berthet, Q.; Amri, E.; Karlov, A.; Upegui, A. Fault-Tolerant FPGA-Based Nanosatellite Balancing High-Performance and Safety for Cryptography Application. *Electronics* 2021, *10*, 2148. https://doi.org/10.3390/electronics10172148


Dynamic Partial Reconfiguration on FPGAs

- Modern HRCAs with FPGA allow DPR capabilities, enabling the user to reconfigure a portion of the FPGA dynamically (at runtime), while the remainder of the device continues to operate.
 - DPR offers the possibility of virtualizing the FPGA area to support several hardware accelerators in time sharing
 - DPR offers the possibility to repair at runtime some areas of the SoC when faults happen

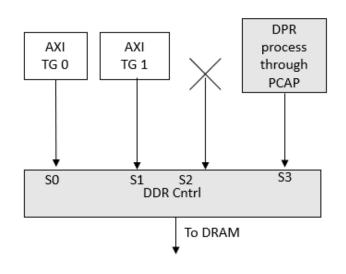
Reference platform for a DPR [4]

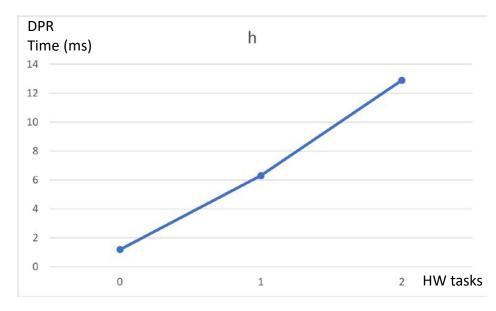
- The DPR is performed through a reconfiguration path
 - a processor transfers a reconfiguration file (bitstream, BS) from a shared external memory to a local memory;
 - the processor transfers the BS from local memory to Dynamic Reconfiguration Memory (DRM) through a Dynamic Reconfiguration Controller (DRC) and a Dynamic Reconfiguration Interface (DRI).
 - The DRM content directly acts on the FPGA array

References

Research question and literature answers

 RQ: Is it possible to use DPR in safety/mission-critical systems while at the same time allowing an effective and efficient acceleration of tasks through the DPR itself?

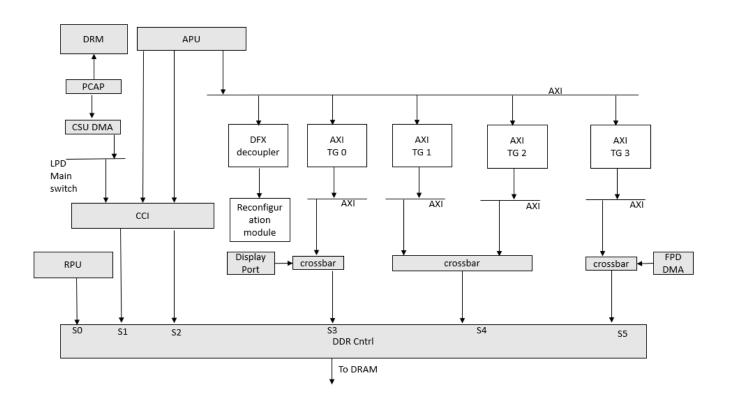

	DPR time	On-chip memory	System halting
[5]	>	X	>
[6]	X	✓	✓
[7]	✓	Х	✓
[8]	√	✓	Х


Gap

- Some works assumes DPR time being only dependent on the reconfiguration interface
- Some works assume to have dedicated memory for bitstream storage
- Some works assume no other tasks executed during DPR

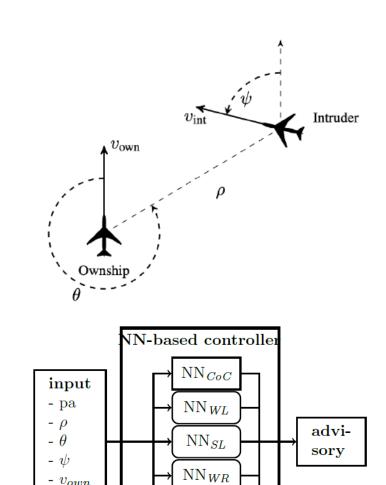
Example of DPR time variation on HRCA

Target: Xilinx Zynq7000, 2 hardware tasks with BS 151 KB (4% of FPGA area), PCAP reconfiguration interface



Requirements from certification

- No certification exists for the usage of HRCAs in the field of avionic
- EASA produced AMC 20-193
 - It recommends best practices to consider when dealing with MCPs, including considerations for dynamic allocation and multicore interference mitigation
 - From AMC 20-193
 - MCP_Resource_Usage_3: identification of any interference cause by the use of shared memory, shared cache, an interconnect, or the use of any other shared resources, including shared I/O, and the verification of the means of mitigation chosen.
- We build on that to extend the analysis recommended in AMC 20-193 to HRCAs


The proposed solution

- Goal: to expose potential fault situations from other tasks in order to ensure appropriate levels of system functions availability
 - Our solution: to develop tests to exercise each type of interference and to measure the impact of that interference on both task execution time and DPR time
 - Target: Zynq Ultrascale+ ZU9EG SoC

Case study

- Recently, ACAS-X has been defined for next-generation airborne collision avoidance system
- We consider a mixed-criticality task-set from ACAS-Xu (dedicated to UAV)
 - System originally based on LUT used in real-time to solve conflicts
 - Neural network proposed to replace LUT [9]
 - Neural network workload and tasks

 NN_{SR}

- v_{int}

Further References

- [5] M. Damschen, L. Bauer and J. Henkel, "CoRQ: Enabling Runtime Reconfiguration Under WCET Guarantees for Real-Time Systems," in IEEE Embedded Systems Letters, vol. 9, no. 3, pp. 77-80, Sept. 2017, doi: 10.1109/LES.2017.2714844.
- [6] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni and G. Buttazzo, "A Framework for Supporting Real-Time Applications on Dynamic Reconfigurable FPGAs," 2016 IEEE Real-Time Systems Symposium (RTSS), 2016, pp. 1-12, doi: 10.1109/RTSS.2016.010.
- [7] L. Pezzarossa, M. Schoeberl and J. Sparsø, "A Controller for Dynamic Partial Reconfiguration in FPGA-Based Real-Time Systems," 2017 IEEE 20th International Symposium on Real-Time Distributed Computing (ISORC), 2017, pp. 92-100, doi: 10.1109/ISORC.2017.3.
- [8] Dörr, T., Sandmann, T., Schade, F., Bapp, F.K., Becker, J. (2019). Leveraging the Partial Reconfiguration Capability of FPGAs for Processor-Based Fail-Operational Systems. In: Hochberger, C., Nelson, B., Koch, A., Woods, R., Diniz, P. (eds) Applied Reconfigurable Computing. ARC 2019. Lecture Notes in Computer Science(), vol 11444. Springer, Cham. https://doi.org/10.1007/978-3-030-17227-5_8

Thank you!

Any questions?