

Addressing Verification and Validation Challenges in Future Cyber-Physical Systems

This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 823788.

On Deploying Machine Learners into Embedded Systems

Tommaso Zoppi, Andrea Ceccarelli, Andrea Bondavalli RCL Group - University of Florence - Italy <u>e-mail: tommaso.zoppi@unifi.it</u>

degli studi FIRENZE

DIMAI DIPARTIMENTO DI MATEMATICA E INFORMATICA ULISSE DINI"

Tabular Data

- Embedded and General-Purpose systems often share the need of analysing tabular data
 - Features: system indicators (mainly networks)
 - Label: normal behavior or specific type of attack

RESILIENT COMPUTING LAB

IWES 2022 Bari – Tommaso Zoppi

DIMA

DIPARTIMENTO DI MATEMATICA E INFORMATICA

What Anomalies are?

Anomaly detection refers to the problem of finding patterns in data that do not conform to an expected behaviour¹

¹Chandola, Varun, Arindam Banerjee, and Vipin Kumar. "Anomaly detection: A survey." ACM computing surveys (CSUR) 41.3 (2009): 15.

Purpose of Anomaly Detectors

Anomalies may have many root causes

- Security threats
- Misconfigurations
- Performance Issues
- Wrong/Slow interactions with other devices
- Benign alterations

NT COMPUTING LAB

Regardless of their root cause, it is always beneficial to detect them.

NT COMPUTING LAB

Embedding Anomaly Detectors

- Anomaly detectors usually rely on supervised/unsupervised ML algorithms
 - Which are usually resource and time-consuming
 - Not a huge problem for systems that do not have hardware or real-time constraints

BUT BUT BUT

- There always exists some kind of limitation to develop systems "in practise"
 - Thus, assuming "unlimited resources" is not doable

Then what?

- As a result, the best intrusion/error/anomaly detector or failure predictor for a given system must be chosen according to constraints:
 - Model size
 - Model speed

NT COMPUTING LAB

- Detection performance
- Availability of labelled data for training

RESILIENT COMPUTING LAB

Snapshot of ML for tabular data

- That is why we took several SotA ML algorithms
 - Supervised: DecisionTree, RandomForest, XGB, NaiveBayes, LDA, kNN, MLP, AdaBoost, QDA
 - Unsupervised: COPOD, ABOD, HBOS, MCD, PCA, ECOD, LOF, CBLOF, Iforest, SUOD
 - Deep learning: TabNet, FastAI
- And we exercised them on a total of 33 datasets regarding critical systems to derive their average performance metrics

Model Size of Detectors

RESILIENT COMPUTING LAB

Model Speed of Detectors (II)

Test Time for Data Point (sec) - Log Scale

Model Speed of Detectors - Comments

There are fast and slow algorithms

- But also there are some that are fast during training and slow at runtime e.g., neighbour-based ones
- and vice versa

Test Time for Data Point (sec) - Log Scale

Those numbers partially confirm the rather recent works stating that

- We should not think about deep learning as the panacea for any classification task!
- For tabular data, tree-based classifiers are more interpretable, often faster and output fewer misclassifications
 - Good news for devices with limited resources!
 - See: Shwartz-Ziv, Ravid, and Amitai Armon. "Tabular data:
 Deep learning is not all you need." Information Fusion 81 (2022): 84-90 (from AI ML group at Intel Israel)

(Finally!) Wrapping Up...

- This talk went through common constraints in deploying ML into embedded systems
 - There is no "silver bullet" algorithm to plug into a system for excellent detection capabilities and performance
 - Detectors have to be crafted for specific systems depending on their constraints
 - Availability of labels for training data is always scarce
 - This calls for unsupervised detectors, which usually have poor detection capabilities
 - There are (research) works in the direction of making unsupervised ML more accurate
 - Get in touch with us if interested!

IENT COMPUTING LAB

Q&A Time

