Feedforward Temperature Compensation in High-Precison
Clock Synchronization Schemes

Federico Terraneo, Zaigham Khalid, Alberto Leva and William Fornaciari

Politecnico di Milano, Italy




Time deterministic distributed embedded systems

The traditional concept of embedded system is evolving

® from isolated systems to networked systems
® integration is fostered by long-term research and industry trends

® Cyber-Physical Systems (CPS)

® industry 4.0
® [ndustrial Internet of Things (lloT)

New research challenges have emerged
® meet real-time requirements in distributed embedded systems

® achieve robustness despite the unreliability of wireless links
® deal with power limitations of battery operated devices



Context: FLOPSYNC-2

Research challenge:
Improving multi hop master-slave clock

synchronization

Key innovations
® approach based on control theory

® high accuracy < lus

® |ow power overhead
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FLOPSYNC-2: efficient monotonic clock synchronisation
2014 IEEE Real-Time Systems Symposium (RTSS) 10.1109/RTSS.2014.14




Context: The real-time mesh networking stack TDMH

Research challenge:
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Key innovations

e distributed algorithm for on-line
topology collection

® guaranteed end-to-end latency

e efficient schedule dissemination using
constructive interference

PHY

TDMH-MAC: Real-Time and Multi-hop in the Same Wireless MAC
2018 IEEE Real-Time Systems Symposium (RTSS) 10.1109/RTSS.2018.00044




Introduction and context Temperature-dependence of clocks Feedforward temperature compensation Experimental results Conclusions
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Temperature-dependence of clocks

Clocks in computer systems are
implemented as

® 3 quartz crystal oscillator

- ® driving a hardware counter
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Effect of temperature variations on clock synchronization schemes
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In feedback-based clock synchronization Feedback-based clock synchronization
® clock error occurs during temperature exhibit a tradeoff between
transients ® the maximum clock error during a
® some schemes are better than other temperature transient

® the synchronization period



Introduction and context Temperature-dependence of clocks Feedforward temperature compensation Experimental results Conclusions
000 00 [ Ie] [e]e] o

Feedforward temperature compensation

We added a temperature sensor in close
proximity of the quartz crystal.

We designed and calibrated a temperature
to frequency model, taking into account

® the heat diffusion into the crystal
package

® the parabolic temperature-frequency

i kel curve of low power crystals
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Flopsync integration

The feedforward temperature compensator
is integrated with the FLOPSYNC-2 clock
synchronization scheme.

This solution has several advantages

® retains the high accuracy of
FLOPSYNC-2

® feedforward compensation period can
be faster
® keep number of sync packets low
® compensate temperature in between
sync periods
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] ® The temperature to frequency model
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] has been identified from experimental
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§ 327677 ® To date, however, the control scheme
= . - .

£ 57676 has been only tested in simulation.
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Temperature [ The simulated ambient temperature is fed

Estmaton to two different paths

® one simulating the actual crystal
temperature and frequency
® one simulating the estimated one

® Measurement noise and model
mismatch can be introduced
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A feedforward temperature compensation scheme has been designed to improve clock
synchronization

® integrates seamlessly with FLOPSYNC-2
® improves clock synchronization during abrupt temperature changes

® allows to lengthen synchronization period for a given accuracy

Future work include testing its performance an a real sensor network.
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