ENFORCING CONTROL-FLOW
INTEGRITY INVIRTUALIZED
ENVIRONMENTS ON ARM PLATFORMS

The 5th Italian Workshop on Embedded Systems
February 9, 2021

Gabriele Serra
Pietro Fara
Giorgiomaria Cicero
Alessandro Biondi

? ;‘ .. : ’
Sant AIlIla

Fr/=i,/ School of Advanced Studies — Pisa

MOTIVATION AND CONTEXT

Can we really trust our embedded devices?
Imagine if this will happen on our cars or trains.

I0S 14.4 and iPadOS 14 .4

Released January 26, 2021

WebKit

Available for: iPhone 65 and later, iPad Air 2 and later, iPad mini 4 and later, and iPod
touch (7th generation)

InleEI9MA remote attacker may be able to cause arbitrary code execution. faYeJelRis

aware of a report that this issue may have been actively exploited.
Description: A logic issue was addressed with improved restrictions.
CVE-2021-1871: an anonymous researcher

CVE-2021-1870: an anonymous researcher

MOTIVATION AND CONTEXT

Embedded systems
e (OSes are written in C/C++
* Exposed to public access

MOTIVATION AND CONTEXT

Embedded systems

Susceptible to attacks

OSes are written in C/C++
Exposed to public access

Code-Reuse-Attacks

* Re-use existent piece of code

* |.e. flow deviated to gain root access
Return-Oriented programming

¢l

‘I

{_—

OS Service

Lib C

Attacked
program

MOTIVATION AND CONTEXT

Embedded systems
e (OSes are written in C/C++
* Exposed to public access

Susceptible to attacks
* Code-Reuse-Attacks

* Re-use existent piece of code

* |.e. flow deviated to gain root access
* Return-Oriented programming

Mitigation technique
* Address space layout randomization (ASLR)
* Integrity check of control flow (CFl)

INTRODUCTION

CFl basic idea:

* build a Control Flow Graph
(CFG) of the program

* CFG defines the legal
execution

INTRODUCTION

CFl basic idea:

* build a Control Flow Graph
(CFG) of the program

* CFG defines the legal
execution

ldr r0O, method
blr rO

void foo() { ... }
void main () {

obj->method = foo;
obj->method() ;

/

INTRODUCTION

void foo() { ... }

CFl basic idea: void main () {

* build a Control Flow Graph
(CFG) of the program

* CFG defines the legal
execution }

obj->method = foo;
obj->method() ;

ldr r0O, method
ﬁrO

ARM introduced hw supports:
e Branch Targets Identification (BTI)

 Forward branch protection
k_ * Pointer Authentication Code (PAC)

e Backward branch protection

BACKGROUND

Pointers in AArch64:

e Address represented on [@:VA SIZE]
* Typically VA _SIZE = 48

e Empty [VA SIZE:54] and [56:63]

63

5655, 54 VA SIZE VA SIZE-1

address
reserved
low/high

tag/reserved

BACKGROUND

AArch64 Pointer Authentication Codes (PAC):

* Hardware-based CFl

* Leverages empty space on 64-bit virtual addresses
* Append a Message Authentication Code (MAC)

63 5655, 54 VA_SIZEIVA_SIZE—I 0

PAC _

‘ address

reserved
low/high
tag/reserved

BACKGROUND

Introduced two insns:
e PAC
e AUTH

PAC Creation takes:

* A pointer

* A 64-bit context

A 128-bit secret key

PAC algorithm ‘H’ can be:
* QARMA

* Implementation
defined

BACKGROUND

Introduced two insns:

e PAC
* AUTH PAC:
PAC Creation takes: C pointer |
* A pointer) .
A 64-bit context Context PAC | Pointer 1
* A128-bitsecret key .
Key

PAC algorithm ‘H’ can be:
* QARMA
* Implementation

defined

BACKGROUND

Introduced two insns:
e PAC
e AUTH

AUTH:

PAC Creation takes:

* A pointer

* A 64-bit context

A 128-bit secret key

PAC algorithm ‘H’ can be:
* QARMA
* Implementation

defined

-~

PAC | Pointer

Context

Pointer

Key

1 | Pointer

BACKGROUND

Pointer authentication ISSUES

 Weakness against signing gadget

BACKGROUND

Pointer authentication ISSUES

Weakness against signing gadget
Weakness against kernel attackers
* Cross EL/Key forgeries
 Key memory leak

CONTRIBUTION

Pointer authentication ISSUES

Weakness against signing gadget
Weakness against kernel attackers
* Cross EL/Key forgeries
 Key memory leak
Attack cannot be detected
 Reported to ARM by Cicero et al in 2019
* Will be fixed with FPAC in ARM v8.6

CONTRIBUTION

Pointer authentication ISSUES

 Weakness against signing gadget
 Weakness against kernel attackers
* Cross EL/Key forgeries
 Key memory leak
e Attack cannot be detected
 Reported to ARM by Cicero et al in 2019
* Will be fixed with FPAC in ARM v8.6
* Available only on ARM ~v8.3
* Currently no COTS SoC available

CONTRIBUTION

Pointer authentication ISSUES

 Weakness against signing gadget .
 Weakness against kernel attackers

e Cross EL/Key forgeries Leverage on
* Key memory leak virtualization to
e Attack cannot be detected ~ counteract these

 Reported to ARM by Cicero et al in 2019
* Will be fixed with FPAC in ARM v8.6

* Available only on ARM ~v8.3

* Currently no COTS SoC available _

issues!

PROPOSED APPROACH

Leverage on CLARE hypervisor to:
1. Improve key management
2. Provide PA to all AArch64 SoC

App App ELO

Kernel EL1

Clare hypervisor EL2

CLARE IN A NUTSHELL

Minimal, bare-metal type-1 hypervisor
natively designed for being secure, safe,
highly-configurable, portable,

and suitable for SIL3/4 certification

Multi-stage Secure Boot
Address-space layout randomization
Trusted Execution Environment (TEE)
Control-flow Integrity

Cyber-security

Optimized execution framework
CLARE for machine learning algorithms
that guarantees safety (via run-

Safety vaer‘"sor Optimized and time monitoring) and predictability
mechanisms predictable
and isolation Al engine

Health monitoring, temporal 0
and spatial isolation for mixed- QO

criticality applications

Dl:l

0

Predictable
hardware

Virtualization of hardware acceleration
resources with predictable behavior

acceleration and isolated execution
.
~ ~~
® &
AUTOMOTIVE AEROSPACE DRONES RAILWAYS MANUFACTURING 4.0

Check it out @ clare.santannapisa.it 20

https://clare.santannapisa.it/

PROPOSED APPROACH

Leverage on CLARE hypervisor to:
1. Improve key management

App App
n/_\&)
Kernel
HYPERVISOR TRAP N 4
ACCESS TO KEY i e e il -—
REGISTERS - D
Clare hypervisor

\ A J
VIRTUALIZE e
ACCESS TO

KEY

ELO

EL1

EL2

21

PROPOSED APPROACH

Leverage on CLARE hypervisor to:
1. Improve key management

0S
HYPERVISOR TRAP b <
ACCESS TO KEY —_— e e = = === — _ - - - -
REGISTERS - ~

ELO

EL1

EL2

VIRTUALIZE
ACCESS TO
KEY IN EL1S

o N\ . /
Secure Monitor

J

EL3

22

PROPOSED APPROACH

Leverage on CLARE hypervisor to:

2. Provide PA to all AArch64 SoC

Kernel
HYPERVISOR CAN \ Y
EMULATE — e e = == —— —_—
INSTRUCTIONS - "

Clare hypervisor

Vl !

ELO

EL1

EL2

23

PROPOSED APPROACH

Leverage on CLARE hypervisor to:

2. Provide PA to all AArch64 SoC
1. PA can be HW accelerated
2. Clare can detect attacks

ﬁ App App ELO
EL1

HYPERVISOR CAN
EMULATE = | = = = = e e o o o o o o o o o o o o e e
INSTRUCTIONS

HW
Accelerator

" o

Clare hypervisor EL2

24

CONCLUSIONS & FUTURE WORKS

Advances in embedded system connectivity
and technologies need to be followed by
corresponding advancements in associated
security protection!

Future directions

o Measure aggregate overhead when protecting 1 domain out of N
o Apply PAC in selective way (only “more at risk” processes)
o Simplify access to PAC features

o Fully integrate the stack for production in CLARE hypervisor

THANK YOU

QUESTIONS?

gabriele.serra@santannapisa.it
gabrieleserra.ml

