IWES 2020

5th Italian Workshop on Embedded Systems

Energy-efficient PPG-based Heart-RateMonitoring

Matteo Risso[†], Alessio Burrello^{*}, Daniele Jahier Pagliari[†], Simone Benatti^{*},

Luca Benini^{*‡}, Massimo Poncino[†] and Enrico Macii[†]

[†]Politecnico di Torino, ^{*}University of Bologna, [‡]ETH Zürich

Key contributions

- Temporal Convolutional Networks (TCNs) for Heart-Rate (HR) monitoring
 - Neural Architecture Search (NAS) design space exploration

SOTA results against other Deep Learning (DL) solutions

Energy-Efficient embedded deployment

- PPG-Based Heart Rate Monitoring
- Dataset: PPG-DaLiA (PPG in Daily Life Activities)
- TimePPG: Optimized TCNs for PPG-based Heart Rate Monitoring
- Experimental Results

- PPG-Based Heart Rate Monitoring
- Dataset: PPG-DaLiA (PPG in Daily Life Activities)
- TimePPG: Optimized TCNs for PPG-based Heart Rate Monitoring
- Experimental Results

PPG-Based Heart-Rate Monitoring

Real PPG waveform with Motion Artifacts (MAs)

PPG Sensor

Very difficult to identify peaks

How to track HR with MAs?

- PPG-Based Heart Rate Monitoring
- Dataset: PPG-DaLiA (PPG in Daily Life Activities)
- TimePPG: Optimized TCNs for PPG-based Heart Rate Monitoring
- Experimental Results

PPG-Dalia Dataset

- 15 Patients
- **37.5** hours of recordings
- 8 different daily activities, e.g., Driving, Cycling, ...
- PPG-Sensor and 3D-Accelerometer embedded in same device
- ECG data as HR ground truth
- PPG and Acceleration data are sliced with a 8/2 sliding window
- Each resultant series present 256
 samples

- PPG-Based Heart Rate Monitoring
- Dataset: PPG-DaLiA (PPG in *Daily Life Activities*)
- TimePPG: Optimized TCNs for PPG-based Heart Rate Monitoring
- Experimental Results

Temporal Convolutional Networks

- TCNs are a class of 1D CNN, with two main peculiarity:
 - Causality
 - Dilation

MorphNet

- MorphNet is a lightweight NAS algorithm, which learns the optimal number of channel of each convolutional layer in a seed architecture
- Possible target metrics: Network Size, MACs, Latency
- MorphNet algorithm :

(i) Train seed network with a sparsifying regularizer
 (ii) Prune output channels with L1-norm ≤ threshold
 (iii) Expand output channels via uniform width-multiplier

TimePPG workflow

- Feed MorphNet NAS with TEMPONet and PPG-Dalia
- Generate a collection of pruned TEMPONet flavors
- Identify best networks :
 - BestMAE
 - BestMCU → Deploy
 - BestSize

- PPG-Based Heart Rate Monitoring
- Dataset: PPG-DaLiA (PPG in Daily Life Activities)
- TimePPG: Optimized TCNs for PPG-based Heart Rate
 Monitoring
- Experimental Results

Design Space Exploration

Grid search on MorphNet hyper-parameters, tweaking regularization

strength and pruning threshold

State-of-the-art comparison

- **TimePPG-BestMAE** outperforms :
 - classical algorithms such asSchack2017 and SpaMaPlus *
 - Deep Lerning methods such as DeepPPG (CNN) and CardioGAN
 - Adaptive filtering techniques such as TAPIR and CurToSS, which are optimized on PPG-Dalia

^{*}Optimized on a different dataset

Embedded Deployment

- We deploy BestMCU and BestSize TCNs on the STM32L476RG;
- We deploy both float32 and int8-quantized variants of each TCN

STM proprietary deployment toolchain, **X-CUBE-AI**, does not support int8 dilated convolutions

Conclusions

Fast and Efficient design space exploration

 State-of-the-art results on the PPG-Dalia dataset with 3.84 BPM average MAE Efficient deployment on a tiny commercial MCU obtaining as few as 5k parameters with a latency of 17.1 ms consuming just 0.21 mJ