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Plutchik, R. The nature of emotions: Human emotions have deep
evolutionary roots, a fact that may explain their complexity and provide
tools for clinical practice. American scientist 2001 89.4: 344-350.



Introduction: Affective Loop

Social Human Robot Interaction (sHRI) Perception
Human Side Robot side . Extern-al Indicators : Natural' Language
Analysis, face and body motion
Action * Internal Indicators: Physiological Signals
Video, Audio, Conversational
r Task ﬁ
Comprehension

Emotions Elicitation Comprehension ¢ Semantic-based approach
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Perception-comprehension-action cycle in Human-Robot Interactions



Introduction: Emotions Classification
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Emotion Classification

Word —based description:
* Wheel of Emotions (Plutchick [1])
* Seven Primitive Emotions model (Ekman([2])

Quantitative description:

e Circumplex Model: 2D model based on Arousal and
Valence Parameter [3]

* Improved Circumplex Model: 3D model based on
Arousal, Valence and Dominance Parameter [3]

[1] Plutchik, R. The nature of emotions: Human emotions have deep evolutionary roots, a fact that may
explain their complexity and provide tools for clinical practice. American scientist 2001 89.4: 344-350.
[2] Ekman, P. An argument for basic emotions. Cognition & emotion 1992 6(3-4), 169-200.

[3] Braun, M., Schubert, J., Pfleging, B., and Alt, F. Improving driver emotions with affective strategies.
Multimodal Technologies and Interaction 2019, 3(1), 21.



“ Classified Emotions Feature Extraction Accuracy (%)

Happy, pleased,

. relaxed, excited,
Ganno;(r)lzlg. etal. neutral, calm,

distressed, miserable,
Li G. et al.
2017

depressed
Mohammadpour M. Fear, sad, frustrated,

et al. happy, pleasant,
2019 satisfied

Barjlnggrlg. et al. Calm, anger, happiness

Gupta V. et al Two binary classifiers
: 2019 (singularly or together):
HV/LV and HA/LA

Excited, relaxed,
negative

Valenza G. et al.
2020 HA/LA

Introduction: State-of-the-Art

Power Spectrum Density (PSD), Sensitive lobes
selection, and relevant electrodes selection

Wavelet Packet Transform (WPT), Relative power

spectrum energy, variance, sample entropy of 8
band

Discrete Wavelet Transform (DWT), Statistical
features of 4 EEG frequency bands: §, 6, a, B.

Non-stationary and non-linear features with the
fractal dimension (FD)

Information Potential (IP) from the flexible analytic
wavelet transform (FAWT)

Time features: peak to peak mean, variance.
Frequency features: Hjorth parameters, maximum
power spectral frequency, Power Spectrum Density
(PSD), and power sum

10 classifiers
Not specified

RBF-SVM

ANN
(best results)
kNN
SVM

RBF - SVM

RF

RF
(best results)
kNN
SVM

A: 82.35
V: 79.95
D:71.14

AVD: 65 (80% max)

A: 94.1 (max)
V: 58.8 (max)

AV: 55.58

AV: 60

A: 79.95
V: ~80
AV: 71.43

A: 62.58

Acronyms: N.A.: RBF- radial basis function; SVM — Support Vector Machine; ANN: Artificial Neural Network; RF: Random Forest; kNN: k-
Nearest Neighbour; H(L)V - High(Low) Valence; H(L)A - High Low Arousal




Introduction: State-of-the-Art

Classified Emotions

Feature Extraction Accuracy (%)

Happy, pleased,

. A: 82.35
Gannouni S. et al. rﬂgﬁ?géle)c(gﬁﬁd’ Power Spectrum Den PSD), Sensitive lobes 10 classifiers V: 79.95
2020 ’ ! selection, and relevant electrodes i Not specified D:71.14

distressed, miserable,

depressed r ~\ AVD: 65 (80% max)
Li G. et al. cited, relaxed, The use of the AVD model RBE-SUM A: 94.1 (max)
2017 ative permits to increase the V:58.8 (max)
Mohammadpour M. Fear, sad, frustrated, number of detectable (bes':‘rNe':ults)
] R emotions
\_ J SVM

Barjinder K. et al. : Non-stationary a
Calm, anger, happiness . . :
2018 ger, happi fracy An increment in the overall % AV: 60

Gupta V. et al. Two binary classifiers .| accuracy is necessary to plan A: 79.95

ingularl her): V: ~80
2019 ‘i;{%;[{;g;’,:;ﬁj\t/f;\’ waveld a proper feedback. Must be 7143
_ maximized.
Time features: J/
Valenza G. et al. Frequency features: Hjorth parameters, maximum (best results) )
2020 HA/LA power spectral frequency, Power Spectrum Density kNN A8 (e
(PSD), and power sum SVM

Acronyms: N.A.: RBF- radial basis function; SVM — Support Vector Machine; ANN: Artificial Neural Network; RF: Random Forest; kNN: k-
Nearest Neighbour; H(L)V - High(Low) Valence; H(L)A - High Low Arousal



Motivations and Aims

The work proposes the design and test of an EEG-
based emotion recognition system that ensures:

Emotion Recognition EMOTIONS CLASSIFICATION ® Iow-memory usage and Iow-complexity
444 operations

| :“‘~'< | ‘ * * Suitability for embedded electronics and

- & ' congested PCR cores
" il Feedback Plan . . -
- High emotion recognition accuracy (>70%)
) — (2/3) Relax
(1/3) Sadness

METHOD

Using a grid-search routine based on a multi-

objective optimization of the features extraction

stage.

It consists of assessing - together - the easiness of

Proposed Architecture Workflow implementation, memory usage, and classification
performance




The Architecture

Offline Subjectively Grid Search for Arousal, Valence or Dominance Parameters
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Algorithm Design, Validation and Test:

DEAP Dataset: https://www.eecs.gmul.ac.uk/mmv/datasets/deap/readme.html

32 Subjects (range: 19-37 years old) watching at 40 1-min long music videos.
Arousal Valence and Dominance evaluated via self-assessment manikin (SAM) rating scale

Real Life Scenario Application:

Experimental setup for the emotion
recognition system application in a real-life
scenario.

H_TVseries
(final)

!

SAM F_TVseries

N d

T

Wait 10 min
(PCR) SAM

R

SAM

Stimulus Onset (with characteristics)
Stimulus (video clip or vocal command)

Emotion Recognized

Self-Assessment Manikin rating



https://www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.html
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In the 4-emotion discrimination context
the proposed system showed an overall

accuracy of 77.86 + 6.89 %
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Results: Classification Performance

In the 8-emotion discrimination context
the proposed system showed an overall

accuracy of 75 + 6.7 %.
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Conclusions

This work focused on the design, and test of a novel emotion recognition system for the perception-
comprehension-action cycle improvement in HRIs.

The proposed system exploits EEG signals to find a direct connection between the brain activity and
the arousal-valence-dominance model .

The system uses a multi-objective optimization of the features
extraction stage, which consists of assessing - together - the
easiness of implementation and classification performance.

The system performance have been validated on an online
dataset (DEAP) and in a real-life scenario.

The system can reach an overall accuracy of 75% on 8
emotions discrimination and ~77% on 4 emotions.




