
1

Italian Meeting
13/11/2019

Gianluca Bellocchi, Alessandro

Capotondi and Andrea Marongiu

UNIMORE

A RISC-V-based FPGA Overlay to
Simplify Accelerator Deployment

for Unmanned Vehicles

2

COMP4DRONES will provide a

framework of key enabling

technologies for safe and

autonomous drones that will

leverage their customization and

modularity for civilian services

ECSEL JU GA No 826610
Website: comp4drones.eu

3

Introduction

4

Transition to a new paradigm

▪ The “classic” set-up comprises a

micro-controller unit (MCU) that

is used for control and actuation

Drone system

Companion

computer
MCU

▪ Current paradygm envisions coupling

a MCU with a companion computer

▪ Heterogeneous solutions (Nvidia

Tegra TX2, Xilinx Zynq US+, ..) are

increasingly used

Drone system

MCU

5

Transition to a new paradigm

Companion computer typically exhibits:

▪ Low power envelopes

▪ High performace

Drone system

Companion

computer
MCU

CORE CORE CORE

CORE CORE CORE

CORE

CORE

AI workloads become feasible for UAVs

6

Heterogeneous platform

▪ There exist many commercially available platforms (Nvidia Tegra TX2,

Xilinx Zynq US+, ..)

▪ Our solution FPGA-based HeSoC

▪ Why FPGA?

➢ Hardware flexibility

➢ Tight power envelopes

➢ Design is more predicatable

➢ Demonstrated to be highly performant with AI workloads

➢ GPUs are closed systems in HW and SW: difficult to design custom extensions

Open-Hardware is the solution!

Using a “closed” platform would not permit to do this.

7

▪ There exist many commercially available platforms (Nvidia Tegra TX2,

Xilinx Zynq US+, ..)

▪ Our solution FPGA-based HeSoC

▪ On the other side..

➢ Hard design process - RTL, low-level design expertise is often needed

➢ Long compilation time - Productivity is negatively impacted

➢ Existing tools are not mature enough to permit rapid swapping and modifying
of design components

Heterogeneous platform

8

Xilinx Zynq Ultrascale+

Zynq Ultrascale+

HOST FPGA

9

▪ The HeSoC architecture comprises a large set of components

▪ Host processor

➢ High-performance ARM processors

➢ Standard deployment of software legacies
❖ Linux - Real-Time distros are available

❖ ROS – Ideal for robotic applications

▪ Programmable logic

➢ Hardware accelerators can enhance both performance (real-time requirements)
and energy saving (high power peaks but low execution times)

Xilinx Zynq Ultrascale+

No need to replicate
these from scratch!

Need to ease the pain of integrating

and deploying these IPs

10

Traditional approach

Zynq Ultrascale+

Particle

filter

HOST

Offloading

DataDataDataData

DNN

Planning FPGA

11

▪ Performance is limited because of:

➢ Accelerators controlling and data
transferring are managed by the HOST (not
local and highly expensive)

▪ Rapid swapping and modifying of

coarse-grained blocks

➢ Still unfeasible

➢ Automated design tools (e.g. Xilinx SDSoC)
lack the required maturity to efficiently and
easily tackle system-level integration of
large HW/SW design blocks

Traditional approach

Zynq Ultrascale+

B

A

C

HOST FPGA

12

▪ Performance is limited because of:

➢ Accelerators controlling and data
transferring are managed by the HOST (not
local and highly expensive)

▪ Rapid swapping and modifying of

coarse-grained blocks

➢ Still unfeasible

➢ Automated design tools (e.g. Xilinx SDSoC)
lack the required maturity to efficiently and
easily tackle system-level integration of
large HW/SW design blocks

Motivation

Essential in modern

UAV systems

What about when

the design includes

many of them?

13

Our proposal

Zynq Ultrascale+

HOST
FPGA

overlay

DRAM

14

Our proposal

Zynq Ultrascale+

HOST Planning

Particle

filter

Memory

DMA

Offloading

DataDataDataData

RISC-V

core

DNN

15

▪ PULP architecture

➢ Parallel Ultra Low Power

➢ Open and Scalable HW/SW research and development platform

➢ Cluster-based architecture

➢ RISC-V ISA compliant

▪ HERO

➢ FPGA emulation of heterogeneous and massively parallel PULP systems

➢ Instantiable with COTS FPGA-based heterogeneous SoCs

Starting point - HERO

Kurth, A., Capotondi, A., Vogel, P., Benini, L., & Marongiu, A.
(2018, November). HERO: An open-source research platform
for HW/SW exploration of heterogeneous manycore systems.

16

Overlay architecture

17

▪ What is it?

➢ Hardware abstraction layer

➢ Overlays the original FPGA fabric Hides hardware details

▪ Features:

➢ Coarse-grained Rapid swapping of architectural blocks

➢ Avoid FPGA design flow Improved design productivity

➢ Programmable via standard APIs for heterogeneous compute platforms

Overlay architecture

18

▪ Small resource overhead

➢Extensive characterization of logic

resource (LUT, flip-flop, BRAM,

DSP) on different architectural

solutions

Our FPGA overlay

19

▪ Acceleration

➢Hardware accelerators populate the cluster

➢Plug-and-play integration with the aid of a

parametric wrapper

▪ Soft core(-s)

➢Orchestration of hardware accelerators

operation

Our FPGA overlay

20

Accelerator integration
methodology

21

▪ A wrapper supports hardware acceleration encapsulating:

➢Communication interface Streamer

➢Control interface Controller

▪ Wrapper specialization

➢Simplified via template instantiation

➢User needs to identify the key-features of its accelerator design

Wrapper-based methodology

22

▪ Streamer

➢Specialized DMA controller that
transforms streams into memory
accesses

▪ Controller

➢Register file to host runtime parameters

➢FSM for coarse-grained control/(re)-
configuration

Starting point – HWPE

23

1. The user needs to identify the key features of its accelerator design

2. Compile a wrapper spec file

o ..nothing more than a simple Python class!

o Describes how the application-dependent components of the wrapper have to be

implemented

3. Specs are propagated throughout the wrapper template library

4. Generation of:

o Hardware wrapper

o Software for accelerator runtime calls

Final result - Wrapper specialization

24

Accelerator integration methodology

25

Conclusions
and

Future work

26

1. Exploration of a hardware overlay solution to simplify the adoption of FPGA-

based HeSoCs

2. Plug-and-play HW/SW integration of hardware accelerators based on a

specializable wrapper IP

3. Use of local proxy core(-s) to orchestrate the accelerator operations

4. Ease the development process of optimized accelerator control routines

Conclusions

27

1. Benchmarking is essential to:

➢ validate the design

➢ verify the design entries

2. Extend the wrapper specification tool capabilities

3. Acceleration and deployment of UAV workloads (perception, planning, control)

Future work

28

Thanks for your attention!

29

