
The Qualification of Software Tools in

Safety-Related Development

Roberto Bagnara
Prof., University of Parma / CTO, BUGSENG

Member, MISRA C Working Group
Member, ISO JTC1/SC22/WG14 — C std. committee

http://bugseng.com

IWES 2020, February 9th, 2021

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

http://bugseng.com

Outline I

1 Prologue

2 Tool Qualification in General

3 Tool Qualification with ISO 26262

4 Qualification Kits

5 Conclusion

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Acknowledgments

Several slides are courtesy of Marcel Beemster, Solid Sands

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Prologue

Do You Want to Reason in Assembly?

f :
.LFB0 :

. c f i s t a r t p r o c
pushq %rbp
. c f i d e f c f a o f f s e t 16
. c f i o f f s e t 6 , −16
movq %rsp , %rbp
. c f i d e f c f a r e g i s t e r 6
movl %edi , −20(%rbp)
movq $0 , −8(%rbp)
movl $0 , −12(%rbp)
jmp .L2

.L3 :
movl −12(%rbp) , %eax

and l −20(%rbp) , %eax

movl %eax , %eax

addq %rax , −8(%rbp)
add l $1 , −12(%rbp)

.L2 :
movl −12(%rbp) , %eax

cmpl −20(%rbp) , %eax

jb .L3
movq −8(%rbp) , %rax
popq %rbp
. c f i d e f c f a 7 , 8
r e t

. c f i e n d p r o c

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Prologue

Or in C?

#include < s t d i n t . h>

u i n t 6 4 t f (u i n t 3 2 t n) {
u i n t 6 4 t t o t a l = 0 ;
f o r (u i n t 3 2 t i = 0 ; i < n ; ++i) {

t o t a l += i & n ;
}
return t o t a l ;

}

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Prologue

Programming Critical, Resource-Constrained Embedded

Systems

C usage is pushed by very strong economic reasons

Unrestricted C has also very serious problems: non-definite
behaviors

Ada, too, has non-definite behaviors

Other more defined high-level languages are not portable, flexible
or efficient enough

Only two sensible options remain:

1 Stick to MISRA C/C++, compile C/C++ to assembly, and
reason about programs at the source code level

2 Reason about programs at the assembly code level

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Prologue

Tools Are Badly Needed

Manually checking for MISRA C/C++ compliance is unpractical

Manually translating C/C++ to assembly is unpractical

Tools are needed, for these and for many other activities related to
the development of embedded systems

To what extent can the tools be trusted?

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification in General

Tool Qualification

The development of safety-critical software is regulated by
standards such as:

CENELEC EN 50128 for railway

RTCA DO-178C for airborne software

ECSS-Q-ST-80C for European space applications

IEC 61508 for industry in general

IEC 62304 for medical devices

ISO 26262 for automotive

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification in General

Tool Qualification (cont’d)

Due to the complexity of software, development and verification
activity, de facto, have to rely on the use of tools

Malfunction of the tools may compromise the integrity of, or fail to
detect defects in, the application software

In order to mitigate this risk, the standards prescribe integrity
requirement on tools: this is usually called tool qualification

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification in General

Tool Qualification (cont’d)

CENELEC EN 50128:2011

When tools are being used as a replacement for manual operations, the
evidence of the integrity of tools outputs can be adduced by the same
process steps as if the output was done in manual operation. These
process steps might be replaced by alternative methods if an
argumentation on the integrity of tools output is given and the integrity
level of the software is not decreased by the replacement.

ISO 26262:2018

[The objective of the] qualification of the software tool [is] to create
evidence that the software tool is suitable to be used to support the
activities or tasks required by the ISO 26262 series of standards (i.e. the
user can rely on the correct functioning of a software tool for those
activities or tasks required by the ISO 26262 series of standards).

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification in General

Tool Qualification (cont’d)

In the different standards, to a varying degree, tools are
categorized depending on:

potential impact of tool failure

likeliness such failure is detected

Depending on the tool categorization, standards:

put requirements on tool development

put requirements on tool documentation

put requirements on user skills: all software team members
including tool users

put requirements on tool qualification methods

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification in General

Tool Qualification (cont’d)

An important distinction is between

tools that can introduce defects in the application software,
e.g., a C/C++ compiler

tools that can fail to detect defects in the application
software, e.g., a MISRA C compliance checker

Another crucial aspect is the scope of use of the tool!

if the assembly code generated by the C compiler is manually
verified, the qualification requirements on the compiler can be
softened or eliminated

if the MISRA C compliance checker is used to justify the
elimination of testing activities its qualification requirements
are increased

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification in General

Tool Qualification (cont’d)

Finally, it must be taken into account that tools qualification can
only be performed in the specific context of their actual use

The tool vendor can (and, in some cases, must) supply material
that simplifies/enables the tool user to qualify the tool in the
specific use context

However, the final responsibility of the tool choice and qualification
lies with the tool user

As a consequence, all bragging about “certified tools” amounts to
pure and simple marketing hoax

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

Tool Qualification with ISO 26262

ISO 26262:2018, Part 8, Section 11: “Confidence in the use of
software tools”

Describes the process of tool qualification for a specific use case
The qualification process comprises:

1 Planning of usage

2 Evaluation

3 Qualification methods

4 Validation and mitigating actions

5 Documentation and review

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

1. Planning of usage

Determine:

a) tool identification

b) tool configuration

c) tool use case

d) tool execution environment

e) maximum ASIL

f) qualification methods

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

2. Tool evaluation

The Tool Confidence Level (TCL) classes represent the required
degrees of confidence in a software tool so that it can be used in a
given tool chain, for a given use case, on a given operational
environment

The classes are:

TCL1 low confidence

TCL2 medium confidence

TCL3 high confidence

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

2. Tool evaluation (cont’d)

The Tool error Detection (TD) classes are meant to capture the
confidence in deployed measures that are able to prevent and/or
detect malfunctions of a software tool and the consequent
production of erroneous output, for a given use case, on a given
operational environment

The classes are:

TD1 there is a high degree of confidence that
malfunctions and the consequent erroneous outputs
will be prevented or detected

TD2 there is a medium degree of confidence that
malfunctions and the consequent erroneous outputs
will be prevented or detected

TD3 there is a low or unknown level of confidence that
malfunctions and the consequent erroneous outputs
will be prevented or detected

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

2. Tool evaluation (cont’d)

The Tool Impact (TI) classes are meant to capture the possibility
that a malfunction of a software tool can introduce or fail to detect
an error in a safety-related item or element under development

The classes are:

TI1 the tool can neither introduce nor fail to detect errors

TI2 the tool can introduce errors and/or fail to detect
errors

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

2. Tool evaluation (cont’d)

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

3. Qualification methods

Columns of ISO 26262:2018, Part 8, Section 11, Table 4, TCL3,
ASIL C–D:

(+) Increased confidence from use

(+) Evaluation of the tool development process

(++) Validation of the tool

(++) Development in accordance with a safety standard

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

4. Validation of the tool

Compliance with the functional specification by testing given the
specific use-case

Must take place in the user tool operational environment

With the precise configuration used in production

Must define mitigations for tool malfunctions

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

Compiler Validation

compiler
testing

ValidationRequirements

requirements
traceabilityISO C/C++

language
specifi cation

implementation unit testing

evidence

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

Compiler Validation: Unit Testing Is Not Enough

Unit tests:

100% MC/DC coverage at

source level

Unit tests: only 50%-80%

MC/DC coverage at

assembly level

Generated

assembly code

C source code

(critical)

C/C++ Compiler

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

Coverage at Source Level

#include < s t d i n t . h>

u i n t 6 4 t f (u i n t 3 2 t n) {
u i n t 6 4 t t o t a l = 0 ;
f o r (u i n t 3 2 t i = 0 ; i < n ; ++i) {

t o t a l += i & n ;
}
return t o t a l ;

}

Complete coverage at source level with one test: f(1)

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

Coverage at Assembly Level: -O0

f :
.LFB0 :

. c f i s t a r t p r o c
pushq %rbp
. c f i d e f c f a o f f s e t 16
. c f i o f f s e t 6 , −16
movq %rsp , %rbp
. c f i d e f c f a r e g i s t e r 6
movl %edi , −20(%rbp)
movq $0 , −8(%rbp)
movl $0 , −12(%rbp)
jmp .L2

.L3 :
movl −12(%rbp) , %eax

and l −20(%rbp) , %eax

movl %eax , %eax

addq %rax , −8(%rbp)
add l $1 , −12(%rbp)

.L2 :
movl −12(%rbp) , %eax

cmpl −20(%rbp) , %eax

jb .L3
movq −8(%rbp) , %rax
popq %rbp
. c f i d e f c f a 7 , 8
r e t

. c f i e n d p r o c

Without optimization complete coverage also at assembly level
with one test: f(1)
Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

Coverage at Assembly Level: -Ofast

f :
.LFB0 :

. c f i s t a r t p r o c
t e s t l %ed i , %ed i

j e .L7
l e a l −1(%r d i) , %eax

cmpl $3 , %eax

jbe .L8
movl %ed i , %edx

movdqa .LC0(% r i p) , %xmm2
movd %ed i , %xmm7
x o r l %eax , %eax

s h r l $2 , %edx

movdqa .LC1(% r i p) , %xmm5
pxor %xmm1, %xmm1
pxor %xmm3, %xmm3
pshufd $0 , %xmm7, %xmm6

.L4 :
movdqa %xmm2, %xmm0
add l $1 , %eax

paddd %xmm5, %xmm2
pand %xmm6, %xmm0
movdqa %xmm0, %xmm4

punpckhdq %xmm3, %xmm0
punpck ldq %xmm3, %xmm4
paddq %xmm4, %xmm0
paddq %xmm0, %xmm1
cmpl %edx , %eax

jb .L4
movdqa %xmm1, %xmm0
movl %ed i , %edx

p s r l d q $8 , %xmm0
and l $−4, %edx

paddq %xmm0, %xmm1
movq %xmm1, %rax
cmpl %edx , %ed i

j e .L11
.L3 :

movl %ed i , %ecx

and l %edx , %ecx

addq %rcx , %rax
l e a l 1(%rdx) , %ecx

cmpl %ed i , %ecx

jnb .L1
and l %ed i , %ecx

addq %rcx , %rax

l e a l 2(% rdx) , %ecx

cmpl %ecx , %ed i

j be .L1
and l %ed i , %ecx

add l $3 , %edx

addq %rcx , %rax
cmpl %edx , %ed i

j be .L1
and l %edx , %ed i

addq %rd i , %rax
r e t

.L7 :
x o r l %eax , %eax

.L1 :
r e t

.L11 :
r e t

.L8 :
x o r l %edx , %edx

x o r l %eax , %eax

jmp .L3
. c f i e n d p r o c

With optimization, f(1) coverage is incomplete at assembly level

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

Uses of Static Analyzers in ISO 26262 (Part 6)

Table 1 — Topics to be covered by modelling and coding

guidelines

Topics
ASIL

ECLAIR
A B C D

1a Enforcement of low complexity ++ ++ ++ ++ X

1b Use of language subsets ++ ++ ++ ++ X

1c Enforcement of strong typing ++ ++ ++ ++ X

1d Use of defensive implementation techniques + + ++ ++ X

1e Use of well-trusted design principles + + ++ ++ X

1f Use of unambiguous graphical representation + ++ ++ ++ –
1g Use of style guides + ++ ++ ++ X

1h Use of naming conventions ++ ++ ++ ++ X

1i Concurrency aspects + + + + –

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

Uses of Static Analyzers in ISO 26262 (Part 6, cont’d)

Table 3 — Principles for software architectural design

Methods
ASIL

ECLAIR
A B C D

1a Appropriate hierarchical structure of software components ++ ++ ++ ++ X

1b Restricted size and complexity of software components ++ ++ ++ ++ X

1c Restricted size of interfaces + + + ++ X

1d Strong cohesion within each software component + ++ ++ ++ X

1e Loose coupling between software components + ++ ++ ++ X

1f Appropriate scheduling properties ++ ++ ++ ++ –
1g Restricted use of interrupts + + + ++ –
1h Appropriate spatial isolation of the software components + + + ++ –
1i Appropriate management of shared resources ++ ++ ++ ++ X

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

Uses of Static Analyzers in ISO 26262 (Part 6, cont’d)

Table 6 — Design principles for software unit design and

implementation

Methods
ASIL

ECLAIR
A B C D

1a One entry and one exit point in subprograms and functions ++ ++ ++ ++ X

1b No dynamic objects or variables, or else online test during their
creation

+ ++ ++ ++ X

1c Initialization of variables ++ ++ ++ ++ X

1d No multiple use of variable names ++ ++ ++ ++ X

1e Avoid global variables or else justify their usage + + ++ ++ X

1f Limited use of pointers + ++ ++ ++ X

1g No implicit type conversions + ++ ++ ++ X

1h No hidden data flow or control flow + ++ ++ ++ X

1i No unconditional jumps ++ ++ ++ ++ X

1j No recursions + + ++ ++ X

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

MISRA Static Analyzer Validation

MISRA-checking
tool testing

ValidationRequirements

requirements
traceabilityISO and

MISRA C/C++
language

implementation unit testing

evidence

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

MISRA/HIS Checker Configuration: C is a Large Family of

Languages

In C99, there are 112 implementation-defined behaviors

As each i.d.b. can be defined in 2 or more ways, there are more
than 2112 ≈ 5× 1033 possible languages

Actually, choosing integer and floating-types in {8, 16, 32, 64}
brings us to more than 1036 possible languages (dialects of C)

Alexander’s star: 7.24 × 1034 different positions

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

C is a Large Family of Languages (cont’d)

Generally speaking, a given compiler can implement, via options,
several such dialects of C

For an extreme case, GCC/x86 64 implements, via options,
millions/billions of dialects of C

As a consequences, the tool must adapt to the particular dialect
implemented by that compiler with that set of options (possibly for
each translation unit)

Further consequence: changing even one compilation option may
have important consequences, including analyzing the wrong code!

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Tool Qualification with ISO 26262

5. Documentation and review

1 Software tool criteria evaluation report

2 Software tool qualification report, typically resulting in
updates to the tool safety manual

3 Confirmation review by an independent party

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Qualification Kits

Qualification Kits

I they are well done, they can decrease the effort of tool
qualification by one to two orders of magnitude

They must contain:

Documentation and documentation templates: if a tool safety
manual is not there it is a bad sign

Validated test suites: this requires thousands of tests for a
MISRA checker, and tens of thousands of tests for a compiler

Possibility for users to add their own test cases

Test automation machinery supplied in source form for
inspection

Possibility of repeating each test completely independently
from the qualification kit

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Qualification Kits

So-called Tool Certificates

A tool cannot be certified, it can be qualified

Marketing people will write just anything to pretend the contrary,
e.g.:

“Usable in [...] ISO 26262 up to ASIL D, TCL1 can be
reached”

“The tool is certified ISO 9001”

In the unfortunate case you end up in court, this kind of things will
be demolished in 30 seconds by expert witnesses

Some certification agencies have responsibility for this malpractice

Always do examine the full reports that are an integral part of the
so-called certificates

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

Conclusion

Conclusion

Tool qualification is an essential requirement for using tools in
safety-related developments

We have covered the basic process for ISO 26262, which is not
very different from the process described in other functional safety
standards

It is a complex process if done in isolation, it is straightforward if
done with the help of a good qualification kit

There are advantages besides checking the box:

Sleeping better (not so with a so-called “tool certificate”)

Decouple application development from tool testing

Reduced time-to-market

With a good qualification kit, or at least a good validation suite, it
is not rocket science

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

✶✿

Conclusion

The End

roberto.bagnara@unipr.it

info@bugseng.com

Roberto Bagnara: University of Parma & BUGSENG The Qualification of Software Tools in Safety-Related Devel.

roberto.bagnara@unipr.it
info@bugseng.com

	Prologue
	Tool Qualification in General
	Tool Qualification with ISO 26262
	Qualification Kits
	Conclusion

