Predictability in Memory Hierarchies
for Real-Time Multi-Core Embedded Systems

Marco Solieri
2018-09-13

Joint work with T. Kloda, L. Miccio, R. Mancuso, N. Capodieci, M. Bertogna

“od " UNIMORE Hipert/Lab

& UNIVERSITA DEGLI STUDI DI High Performance Real Time
_: MODENA E REGGIO EMILIA Lab

Partially supported by: HERCULES project (Innovation Action, H2020), and Xilinx inc.

High-Performance Embedded Systems for Real Time Application

Commercial off-the-shelf multi-core system-on-chip products

* NVIDIA Tegra: X1, X2 (GPGPU)
« Xilinx UltraScale+: XCZU7, XCZU9 (FPGA)

Memory hierarchy and architecture jeopardise predictability,
thus applicability and flexibility

1. Cluster-shared last-level cache without hardware lockdown
= cores contention increases both average latency and jitter
2. Random replacement policy
= worst-case access time extremely pessimistic
3. System-shared SDRAM subsystem
= contention increases both average latency and jitter

Real-Time Assisting Hypervisor

Hypervisor

« Software fills hardware design gaps
 Seamless integration with legacy solutions

Jailhouse hypervisor

+ Siemens maintained, reasonably good maturity

- targets critical systems: resource partitioning

- small codebase (hence easily certifiable)

- free and open-source licenced (hence merrily hackable)

Contention to Last-Level Cache

Cache colouring support

Page colouring

0x00 index 0
0x01 index 1
0x02 index 2
oo N /| N
0404 way0 wayl way2 way3

0x05

set-associative cache
0x06

0x07 -
0x08
0x09
0x0A

0x0B

memory

Virtualised, two-stage translation

Stage 1 translation owned
by each Guest OS

a

IE

Virtual amress (VA) map of
«each App on each Guest OS

« User interface: Jailhouse configuration

“mgnediate Physical" address
map of each Guest OS (IPA)

Stage 2 translation owned by the VMM

Hardware has 2-stage
memory translation

Tables from Guest OS
translate VA to IPA

Second set of tables from
VMM translate IPA to PA

Allows aborts to be routed to
appropriate software layer

Physical Address (PA) Map

+ See also XVisor support (Modica, Biondi, Buttazzo, Patel; 2018)

Cache colouring evaluation on access latency

T T T \‘ T T T \‘ T TT1T1T \‘ T TTITT T T \‘ T
e solo -
80 |- . 2 interf (il i N
- -~ col solo ;
- col 2 interf / I
/ I
’g 60 |- L1 size j’ b |
~ L2 size / L
§ ------ col. L2 size)
Q - / |
2 40 /
—
20 N
OT\H\ | T ol ol

102 1072 107t 10° 10!
Memory Depth (MiB)
(a) Sequential Access (64 B stride).

Pseudo-Random Cache
Replacement Policy

Random replacement and self-eviction

Explicit replacement support: Jailhouse hypercall

Explicit replacement evaluation on prefetch: micro-benchmark

0n Measure
0.8 H \‘ Model o
Uo Measure, on invalid lines
0.6 5
a8
&
04+ 5
0.2+ 5
0 L]

I I f f f I I
12345678 910111213141516
No. of successfully prefetched lines

Explicit replacement evaluation on prefetch: benchmarks

Time (Kcycles) L2 miss
APPLICATION Conf. maximum average per line
base 8,089.871 7,692.389 2.1973
Heap sort .
pr.inv. 7,600.765 7,528.418 1.0127
. base 99.344 91.393 1.5107
Seq. Iterator .
pr.inv. 80.492 70.820 1.0000
. base 272.061 255.475 1.5078
Rand. iterator .
pr.inv. 214.077 193.972 0.9990
SHA-1 base 808.105 791.198 1.0000
pr.inv. 800.823 783.435 1.0000

base 14,215.224 14,203.511 1.0010

Convolution .
prinv. 14,236.808 14,209.904 1.0000

Contention to Shared DRAM

Predictable Execution Model and Jailhouse support

non-PREM

With PREM

CPUO CPU1

MEM

CPUO
CPU1 . . .

+ (Pellizzoni, Betti, Bak, Yao,
Criswell, Caccamo, Kegley;
2011)

« User interface:
Jailhouse hypercalls

. lock/unlock a memory
Memory mutex

scheduler

vl

PREM co-scheduling evaluation: TBD

Not available, yet.

10

Conclusion

What we have

1. Cache colouring to address mutual evictions on caches
2. Explicit replacement to address self-evictions on caches
3. PREM support to address DRAM contention

What else the HERCULES consortium have on Jailhouse

1. MemGuard by CTU in Prague
2. PREMising compiler by ETH in Zurich

1"

1. Progress by keeping up-to-date with

* NVIDIA SoCs with cluster-shared L2 and isle-shared L3 caches
« ARM v8.4 definition with more advanced cache technologies

2. Widen applicability

« Public release and upstream integration
+ Exploit accelerators (FPGA and GPGPU) to extend possibilities

12

	Contention to Last-Level Cache
	Pseudo-Random Cache Replacement Policy
	Contention to Shared DRAM
	Conclusion

