Addressing DAGs of Heterogeneous CPU-GPU
. Parallel Tasks Through High-Productivity
' Single-Source PHAST Library

Biagio Peccerillo Sandro Bartolini

Universita degli Studi di Siena

Trends in the Embedded World

Science-fiction scenarios

. » The demand for embedded applications and technologies is growing
year by year

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
= Automatie aTelecommunication =Healthcare
windustrial =Cansumer Electronics s Miltary and aerospace
=Others

i ope embedded system market size, by application, 2012-2023

ss in the field is pushing us closer and close

Trends in the Embedded World

Constraints

» In order to make these scenarios happen, embedded devices must
meet two major constraints:
1. High-performance
2. Low power consumption

» Today, these needs are better approximated by a plurality of p
devices, by a heterogeneous approach:

» multi-core CPUs

PHAST Library

Main features

PHAST Library: Parallel Heterogeneous-Architecture STL-like Template
Library
» High-level modern C++ library

» Heterogeneous: can be targeted on NVIDIA GPUs & Multi-core
CPUs (at the moment...) via a single globally-defined macro

» Inner layers are implemented in std.:threads & CUDA

PHAST Library

Structure

» Multi-dimensional Containers
» 1D vector, 2D matrix, and 3D cube
» lterators
P> Permit visiting containers piece-wise — not only element-wise
» Various grains of parallelism explored with the same formalism
» Algorithms & Functors »
» STL portings and linear-algebra related ones

» Functors allow users to personalize computation on conta
sub-portions of various shapes '

elization Parameters

PHAST Library

A quick example

Declare a matrix object;

< T, policy = 2. Fill its rows with increasing
phast::get_default_policy()>
Tinear_ro \/alues;

phast: :functor::func_vec< , policy>

_PHAST_METHOD perator) (. Print the matrix

phast::functor::vector<T>& ro

this->fi11(row.begin(), row.end(), J
static_cast<T>(this->get_index()));

main(s * argv[])

phast::matrix<);
phast: ¢ . d O, mat.end_i(Q),
Tinear_row<

std:icout << mat << std::endl;
return O;

matrix iterator_i

PHAST Library

PHAST parallelism

» PHAST philosophy resembles STL's: the same computation is
applied to collections of elements, but:
» The concept of element is flexible
» Computation is parallel
P> Can be targeted on multiple devices
» Container topology is less strict (up to three dimensions)

STL's formalism is good to express data-parallel problems

comes short for other classes of parallel problems

3-parallel is in fact characterized by the applicatic
itation on multiple data

Task Parallelism i

Definition

Task parallelism: multiple calculations on
multiple data

Dependencies between tasks can be expre
and visualized in the form of a Direct Ac
Graph (DAG)

These dependencies also regulate the
execution and the opportunities o
parallelization

On multi-core processors, thi
by executing tasks on dif

Task Parallelism

Our proposal: the task class

< callable,
task;

< callable,
task<Callable, Args...> make task(ca17ab79&& c311ab1e Args&&. .. args);

» task is a C++14 template class that wraps a callable (free function,
method, lambda, or functor) and its arguments as a tuple

» make_ task is a free function that takes a callable and its argumen:
as parameters and returns a task ‘

» The task exposes a get() method — its invocation executes t
underlying callable on its arguments and returns its return-\
Wl the caller

e task depends on other tasks, their get() methc

The task class

]
How to express dependencies (; I
e

» Dependencies between tasks can be expressed when make_task is
invoked: any of the parameters of the callable can be replaced with
a task wrapping a callable that returns the needed value
The only constraint is that the type returned by the independent
task must match the type of the argument of the callable invo
inside the dependent task ’
This mechanism is achieved in three steps inside the depend:

el - get() method:
1. For each task in the argument tuple, its get() metho i

aunched via std::async
dependent task waits for the completlon of
and saves their results

The task class

task and PHAST integration

» PHAST algorithms and methods are synchronous, but asynchron|C|t
can be achieved by invoking them in tasks
- » Users must be sure that no PHAST container is modified in mor
than one task at once
» This dependency can be expressed by returning PHAST cont

Task & PHAST

A full example: image histogram stretch

~ {, \v

Histogra for input picture Histogram for output picture

% o 150 %0 20 3 £ 100

rayscale image is read — pixels are modeled as uchar:

imum and maximum pixel values are acqui

| in the image, it is rescaled acco

100 150 ™300
input pixel value

Task & PHAST

A full example: image histogram stretch

Task-PHAST implementation of the image
histogram stretch application

using uchars_t
phast::matrix<uchar8_t>* read_image (: lename);
uchar8_t min_pixel st phast::matrix<uchar8_t>* p_img);
uchar8_t max_pixel(const phast::matrix<uchar8_t>* p_img);
3

[LES matrix<uchar8_t>* scale(phast::matrix<uchar8_t: p_img,
uchar8_t min, uchar8_t max);

int write_image(phast::matrix<uchar8_t>* p_img, * filename);

main(int arge, argv[])

if (arge <)
{

std:icerr << << argv[0] <<
return -1;

read_task = make_task(read_image, argv[!]

min_task = make_task(min_pixel, read_task);

max_task = make_task(max_pixel, read_task);

scale_task = make_task(scale, read_task, min_task, max_task);
auto write_task = make_task(write_image, scale_task, argv[’]);

write_task.get();
return 0;

Task & PHAST

A full example: image histogram stretch

uchar8_t min_pixel(const phast::matrix<uchar8_t>* p_img)

return *phast::min_element(p_img->begin_ij(), p_img->end_ij());

uchar8_t max_pixel(const phast::matrix<uchar8_t>* p_img)
{

return *phast::max_element(p_img->begin_ij(), p_img->end_ij());
template <typename T, unsigned int policy = phas get_default_policy()>
struct scaling : phast::functor::func_scal<T, policy>

_PHAST_METHOD scaling(T min, T max) : min_(min), max_(max) {}
PHAST_METHOD void operator() (phast::functor::scalar<T>& pixel)

pixel = static_cast<T>(((-) / double(max_ - min_)) * (pixel - min_));

min_;
max_;

1
}
.
I

i H
phast::matrix<uchar8_t>* scale(phast::matrix<uchar8_t>* p_img, uchar8_t min, uchar8_t max)
{

phast::for_each(p_img->begin_ij(), p_img->end_ij(), scaling<uchar8_t>(min, max));
return p_img;

Task & PHAST

A full example: image histogram stretch

sugan ptpce

it
v

Task & PHAST

A full example: image histogram stretch

Output: A (bette

Teple in the Fushimi Inari Taisha, Kyoto

40> «Fr «

Summary

. » Embedded applications need heterogeneous systems from
- performance and power standpoints

» Programmers of heterogeneous systems need high-productivity
frameworks, like PHAST

0, Many interesting parallel problems need task support to b

ST Library can be extended to support task-DA

Questions

Questions?

Construction): https://phast.diism.un
peccerillo} @diism.unisi.it

https://phast.diism.unisi.it

	Trends in the Embedded World
	PHAST Library
	Task Parallelism
	Questions?

