
Addressing DAGs of Heterogeneous CPU-GPU
Parallel Tasks Through High-Productivity

Single-Source PHAST Library

Biagio Peccerillo Sandro Bartolini

Università degli Studi di Siena

Siena, IWES 2018



Trends in the Embedded World
Science-fiction scenarios

I The demand for embedded applications and technologies is growing
year by year

Europe embedded system market size, by application, 2012-2023 (USD Billion)

I Progress in the field is pushing us closer and closer to science-fiction
scenarios:
I Smart homes
I Smart cities
I Self-driving cars
I Voice assistants
I Virtual and Augmented Reality



Trends in the Embedded World
Constraints

I In order to make these scenarios happen, embedded devices must
meet two major constraints:

1. High-performance
2. Low power consumption

I Today, these needs are better approximated by a plurality of parallel
devices, by a heterogeneous approach:
I multi-core CPUs
I GPUs
I FPGAs
I TPUs (TensorFlow Processing Units)

I Mastering programming techniques for all these devices would be
infeasible without productivity-oriented heterogeneous frameworks



PHAST Library
Main features

PHAST Library: Parallel Heterogeneous-Architecture STL-like Template
Library
I High-level modern C++ library
I Heterogeneous: can be targeted on NVIDIA GPUs & Multi-core

CPUs (at the moment...) via a single globally-defined macro
I Inner layers are implemented in std::threads & CUDA
I Permits to set parallelization parameters independently of

application code
I Allows for low-level architecture-specific optimizations in

#ifdef-protected blocks

B. Peccerillo and S. Bartolini, ”PHAST – A portable high-level modern C++
programming library for GPUs and multi-cores,” IEEE Transactions on Parallel and
Distributed Systems, pp. 1–15, 2018 [Online]. Available:
https://www.doi.org/10.1109/TPDS.2018.2855182



PHAST Library
Structure

I Multi-dimensional Containers
I 1D vector, 2D matrix, and 3D cube

I Iterators
I Permit visiting containers piece-wise – not only element-wise
I Various grains of parallelism explored with the same formalism

I Algorithms & Functors
I STL portings and linear-algebra related ones
I Functors allow users to personalize computation on container

sub-portions of various shapes
I Parallelization Parameters

I Estimated via heuristics, but can also be tuned by programmers
I Hierarchical Design

I In-functor containers can be visited via in-functor iterators and
manipulated in in-functor algorithms



PHAST Library
A quick example

1. Declare a matrix object;
2. Fill its rows with increasing

values;
3. Print the matrix

matrix iterator i

0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

output



PHAST Library
PHAST parallelism

I PHAST philosophy resembles STL’s: the same computation is
applied to collections of elements, but:
I The concept of element is flexible
I Computation is parallel
I Can be targeted on multiple devices
I Container topology is less strict (up to three dimensions)

I STL’s formalism is good to express data-parallel problems, but it
comes short for other classes of parallel problems

I Data-parallel is in fact characterized by the application of the same
computation on multiple data

I Many applications that arise in embedded context are not
data-parallel!



Task Parallelism
Definition

T1

T2 T3

T4

T5

I Task parallelism: multiple calculations on
multiple data

I Dependencies between tasks can be expressed
and visualized in the form of a Direct Acyclic
Graph (DAG)

I These dependencies also regulate the order of
execution and the opportunities of
parallelization

I On multi-core processors, this can be achieved
by executing tasks on different cores

I A synchronization mechanism is needed:
dependent tasks cannot execute before their
dependencies



Task Parallelism
Our proposal: the task class

I task is a C++14 template class that wraps a callable (free function,
method, lambda, or functor) and its arguments as a tuple

I make task is a free function that takes a callable and its arguments
as parameters and returns a task

I The task exposes a get() method – its invocation executes the
underlying callable on its arguments and returns its return-value to
the caller

I If the task depends on other tasks, their get() methods are invoked
before



The task class
How to express dependencies

I Dependencies between tasks can be expressed when make task is
invoked: any of the parameters of the callable can be replaced with
a task wrapping a callable that returns the needed value

I The only constraint is that the type returned by the independent
task must match the type of the argument of the callable invoked
inside the dependent task

I This mechanism is achieved in three steps inside the dependent task
get() method:

1. For each task in the argument tuple, its get() method is concurrently
launched via std::async

2. The dependent task waits for the completion of each asynchronous
execution and saves their results

3. When all the asynchronous executions complete, the arguments of
the underlying callable are ready and it can be invoked



The task class
task and PHAST integration

I PHAST algorithms and methods are synchronous, but asynchronicity
can be achieved by invoking them in tasks

I Users must be sure that no PHAST container is modified in more
than one task at once

I This dependency can be expressed by returning PHAST containers
from tasks and using them as arguments in dependent tasks’
callables

I Parallelism and heterogeneity are achieved by executing data-parallel
PHAST algorithms on a device (NVIDIA GPU or multi-core)
decoupled from the device where tasks are scheduled (multi-core)



Task & PHAST
A full example: image histogram stretch

I A grayscale image is read – pixels are modeled as uchar8 in the
range [0, 255]

I The minimum and maximum pixel values are acquired
I For each pixel in the image, it is rescaled according to the equation

out = 255−0
max−min × (in − min)



Task & PHAST
A full example: image histogram stretch

READ

MIN MAX

SCALE

WRITE

Task-PHAST implementation of the image
histogram stretch application



Task & PHAST
A full example: image histogram stretch



Task & PHAST
A full example: image histogram stretch

Input: A Temple in the Fushimi Inari Taisha, Kyoto

Input image histogram



Task & PHAST
A full example: image histogram stretch

Output: A (better) Temple in the Fushimi Inari Taisha, Kyoto

Output image histogram



Summary
.

I Embedded applications need heterogeneous systems from
performance and power standpoints

I Programmers of heterogeneous systems need high-productivity
frameworks, like PHAST

I Many interesting parallel problems need task support to be
conveniently expressed

I PHAST Library can be extended to support task-DAGs with a
minimum effort



Questions
.

Questions?

Website (Under Construction): https://phast.diism.unisi.it
e-mails: {bartolini, peccerillo}@diism.unisi.it

https://phast.diism.unisi.it

	Trends in the Embedded World
	PHAST Library
	Task Parallelism
	Questions?

