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The CHESS Open Source Toolset

 Model based engineering
 CHESS Modelling Language
 Based upon Eclipse, UMLPapyrus

 Separation of concerns
 Functional vs non functional
 Among design views

 Component based development
 Specialized to capture the non 

functional
properties of components

• Real Time
• Dependability/Safety

 Correctness by construction
 Extra functional properties are:

• asserted and verified at design 
time

• preserved/guaranteed at run 
time
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Composition with guarantees for high-
integrity

embedded software component assembly

CHESS is available as Eclipse Polarsys Project
https://www.polarsys.org/chess/



Main R&D pojects
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AMASS
Architecture-driven, Multi-concern 

and Seamless Assurance and 
Certification of Cyber-Physical Systems



The CHESS Modeling Language

In addition, it provides a 
profile for Dependability 
and Contract-based 
modelling

Imports subsets of 
standard languages 
 avoid redundancy 
fix semantic variation 
points

Standard profile for 
Modeling and Analysis of
Real-Time and 
Embedded Systems

Standard Unified  
Modeling Language

Standard profile for 
System (and 
Requirements) Modeling

Integrates and extends standard 
OMG languages 
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The CHESS methodology– high 
level view
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Contract-based analysis
Dependability analysis
Real-time analysis

Iteration on the model:
Feasibility, composition
propositions…

System Model using the 
CHESS modelling language

Model transformations

Model transformations

…



Major Capabilities and Analysis Tools 

 Model consistency checks
 Failure Propagation Analysis and FMEA/FMECA generation
 State-based Dependability Analysis (by DEEM integration)
 Contract-based Design and Analysis (by OCRA, nuXmv and 

XSAP integration)
 Safety case generation (by OpenCert integration)
 Real time analysis  (by MAST integration)

• Schedulability and end-to-end response time analysis (with 
multi-core support)

• Back propagation of analysis results 
 Domain specific needs

• IMA support
• AUTOSAR support

 Code generation for Ada (and C)
 Support for run-time monitoring
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CHESS Design Views
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SystemView

SoftwareView (PIM)

DeploymentView

PSMView

Real Time 
ViewAnalysisView

RequirementView

Contract-
based
View

Dependability
View



Bird Flight on Views

System Model SW Model - staticRequirements

DeploymentSW Model - dynamic Analysis View
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Software View - CHESS component 
model

 Component
 Reusable functional unit, decorated with extra-functional 

constraints
 Platform Independent 

 Container and Connector
 Implementation of the extra-functional properties of 

components
 Factorized implementation
 Platform Specific (PSM View)
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Using Contracts in CHESS
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 Use Contracts for System Engineering
 for lower levels of decomposition to be 

consistent with the higher ones
 to formalize conditions for element 

verification and integration
 for reuse of abstractions of available 

components  
 Contract-based design benefits

 compositional reasoning
 co-engineering 
 separation of concerns
 systematic virtual integration and 

verification 
 protection of intellectual property 

Reusable
component



Contracts-based approach
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 Contracts composed of Assumptions and 
Guarantees
 Assumptions are properties expected 

to be satisfied by the environment
 Guarantee is a statement that 

holds as long as the environment 
satisfies the assumption

Contract

Assumption

GuaranteeThe conceptual models

System Functional Architecture

System Logical Architecture 

System Physical Architecture

Software Architecture

Step-wise (vertical) refinement process 
with formal verification of contract 
refinement
within each conceptual model 
and trace relation between 
corresponding 
entities at different conceptual levels



Step-wise refinement
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Formal verification
If the refinement steps are proven correct, then any implementation of the 
leaf components that satisfies the component contracts can be used to 
implement the system

A

B C

D E

… it is a top-down process

Reusable
component

… but is also enables 
bottom-up

exploitation of libraries 
of reusable certified 

components



Contract-based View

 Requirements formalization
 Usage of LTL

 Collect formalized requirements as
contracts
 Assumption and guarantee properties

 Assign contracts to system/software/HW 
platform components

 Enable contract-based analysis
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Contracts modelling support
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Requirements 
Definition

Contracts 
Definition Design Verification

Contracts 
modelled as a 
special  kind of 
constraint, 
owning 
assumptions 
and guarantees 
constraints
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AMASS
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Requirements 
Definition

Contracts 
Definition Design Verification

 Seamless integration with OCRA, nuXmv
and XSAP tools from FBK
 Verification of contracts refinements
 Verification of contracts composition
 FTA from contracts specification
 Verification of contracts against component 

behavior specification

Contract-based analysis support



QUESTIONS?
Thank you for your attention


