
Silvia Mazzini, Stefano Puri
Intecs

Credits to University of Padua, University of Florence,
Fondazione Bruno Kessler, Mälardalen University Sweden

Contract-based design with the
CHESS toolset

The CHESS Open Source Toolset

 Model based engineering
 CHESS Modelling Language
 Based upon Eclipse, UMLPapyrus

 Separation of concerns
 Functional vs non functional
 Among design views

 Component based development
 Specialized to capture the non

functional
properties of components

• Real Time
• Dependability/Safety

 Correctness by construction
 Extra functional properties are:

• asserted and verified at design
time

• preserved/guaranteed at run
time

2

Composition with guarantees for high-
integrity

embedded software component assembly

CHESS is available as Eclipse Polarsys Project
https://www.polarsys.org/chess/

Main R&D pojects

3

AMASS
Architecture-driven, Multi-concern

and Seamless Assurance and
Certification of Cyber-Physical Systems

The CHESS Modeling Language

In addition, it provides a
profile for Dependability
and Contract-based
modelling

Imports subsets of
standard languages
 avoid redundancy
fix semantic variation
points

Standard profile for
Modeling and Analysis of
Real-Time and
Embedded Systems

Standard Unified
Modeling Language

Standard profile for
System (and
Requirements) Modeling

Integrates and extends standard
OMG languages

4

The CHESS methodology– high
level view

5

Contract-based analysis
Dependability analysis
Real-time analysis

Iteration on the model:
Feasibility, composition
propositions…

System Model using the
CHESS modelling language

Model transformations

Model transformations

…

Major Capabilities and Analysis Tools

 Model consistency checks
 Failure Propagation Analysis and FMEA/FMECA generation
 State-based Dependability Analysis (by DEEM integration)
 Contract-based Design and Analysis (by OCRA, nuXmv and

XSAP integration)
 Safety case generation (by OpenCert integration)
 Real time analysis (by MAST integration)

• Schedulability and end-to-end response time analysis (with
multi-core support)

• Back propagation of analysis results
 Domain specific needs

• IMA support
• AUTOSAR support

 Code generation for Ada (and C)
 Support for run-time monitoring

6

CHESS Design Views

7

SystemView

SoftwareView (PIM)

DeploymentView

PSMView

Real Time
ViewAnalysisView

RequirementView

Contract-
based
View

Dependability
View

Bird Flight on Views

System Model SW Model - staticRequirements

DeploymentSW Model - dynamic Analysis View

8

Software View - CHESS component
model

 Component
 Reusable functional unit, decorated with extra-functional

constraints
 Platform Independent

 Container and Connector
 Implementation of the extra-functional properties of

components
 Factorized implementation
 Platform Specific (PSM View)

9

Using Contracts in CHESS

10

 Use Contracts for System Engineering
 for lower levels of decomposition to be

consistent with the higher ones
 to formalize conditions for element

verification and integration
 for reuse of abstractions of available

components
 Contract-based design benefits

 compositional reasoning
 co-engineering
 separation of concerns
 systematic virtual integration and

verification
 protection of intellectual property

Reusable
component

Contracts-based approach

11

 Contracts composed of Assumptions and
Guarantees
 Assumptions are properties expected

to be satisfied by the environment
 Guarantee is a statement that

holds as long as the environment
satisfies the assumption

Contract

Assumption

GuaranteeThe conceptual models

System Functional Architecture

System Logical Architecture

System Physical Architecture

Software Architecture

Step-wise (vertical) refinement process
with formal verification of contract
refinement
within each conceptual model
and trace relation between
corresponding
entities at different conceptual levels

Step-wise refinement

12

Formal verification
If the refinement steps are proven correct, then any implementation of the
leaf components that satisfies the component contracts can be used to
implement the system

A

B C

D E

… it is a top-down process

Reusable
component

… but is also enables
bottom-up

exploitation of libraries
of reusable certified

components

Contract-based View

 Requirements formalization
 Usage of LTL

 Collect formalized requirements as
contracts
 Assumption and guarantee properties

 Assign contracts to system/software/HW
platform components

 Enable contract-based analysis

13

Contracts modelling support

14

Requirements
Definition

Contracts
Definition Design Verification

Contracts
modelled as a
special kind of
constraint,
owning
assumptions
and guarantees
constraints

14

AMASS

15

Requirements
Definition

Contracts
Definition Design Verification

 Seamless integration with OCRA, nuXmv
and XSAP tools from FBK
 Verification of contracts refinements
 Verification of contracts composition
 FTA from contracts specification
 Verification of contracts against component

behavior specification

Contract-based analysis support

QUESTIONS?
Thank you for your attention

