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CERBERO Goal 

4 

Cross-layer modEl-based fRamework for multi-oBjective dEsign of 
Reconfigurable systems in unceRtain hybRid envirOnments 

(CERBERO) 

 Integrated model-based methodology and initial 
framework for multi-objective design, 
incremental prototyping and continuous DevOps 
of Adaptive Cyber Physical Systems 

 
• From (User Requirements) 
• SoS and System level 
• Application / Service level 
• Real Time Manager level 
• To Real Time Software and Hardware implementation 



Self-Adaptation in Cyber-Physical Systems  

ENVIRONMENTAL AWARENESS: Influence of the environment on the system, i.e. 
daylight vs. nocturnal, radiation level changes, etc.  
Sensors are needed to interact with the environment and capture conditions 
variations.  

USER-COMMANDED: System-User interaction, i.e. user preferences, etc.  
Proper human-machine interfaces are needed to enable interaction and capture 
commands.  

SELF-AWARENESS: The internal status of the system varies while operating and 
may lead to reconfiguration needs, i.e. chip temperature variation, low battery.  
Status monitors are needed to capture the status of the system.  
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Adapt:  
Reconfigure the heterogenous 
(HW-SW) computing 
infrastructure. Multiple fabrics. 
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Experimental Results – Reconfiguration Overhead 

Size [B] Time [ms] Energy [mJ] 

FG: 1 slot 858k 16.42 15.18 

FG: 2 slots 1715k 47.62 51.91 

FG: 3 slots 2573k 75.95 67.1 

FG: 4 slots 3430k 106.14 94.11 

CG: 4 parallel 2 0.09 0.11 
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Conclusions 

The presented toolchain integrates the MDC tool with the ARTICo3 framework, supporting 

the automatic development, from specification down to implementation, of multi-grain 

reconfigurable systems, speeding up the design process and facilitating their deployment 
and runtime management.  

Experimental results of this proof-of-concept edge-detection test case demonstrated the 

potential of the approach in terms of FPGA resources, timing and energy efficiency. 

The proposed methodology can be particularly useful in CPS contexts, where variability is 

common due to the involvement of user, environment or system requirements. 
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