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“The best way to predict the future is to invent it.”  

Alan Kay
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Entering in  
Human and machine collaboration era

ENABLED BY ARTIFICIAL INTELLIGENCE  
(AND DEEP LEARNING)
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CYBER PHYSICAL ENTANGLEMENT

Computer are not anymore a “PC” 

They get input from the real world with sensors, 
not anymore with keyboards 

They interact with the world without screen 
Thanks to progress in Deep Learning for example 

They are everywhere, morph in our environment 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New 
services

Smart sensors

Internet of 
Things

Big Data

Data Analytics / 
Cognitive 

computing

Cloud / HPC
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ECONOMICAL DRIVE OF 
CONNECTED THINGS: 

BETTER EFFICIENCY IN 
RESOURCES AND 

ENERGY 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New 
services

Smart sensors

Internet of 
Things

Big Data

Data Analytics / 
Cognitive 

computing

Cloud / HPC

Physical 
Systems

Transforming data into information as early as possible

Cyber Physical 
Entanglement

Processing, 
Abstracting 

Understanding 
as soon as  
possible

C2PS: COGNITIVE ( CYBERNETIC* AND PHYSICAL ) SYSTEMS

 

ENABLING EDGE INTELLIGENCE

* As defined by Norbert Wiener: how humans, animals and machines control and communicate with each other.

True 
collaboration 
between edge 
devices and the 
HPC/cloud

Enabling Intelligent data 
processing at the edge: 

Fog computing 
Edge computing 
Stream analytics 

Fast data… 
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1948: NORBERT WIENER  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Direct Brain Computer 
Interface (BCI) 

Here allowing a paraplegic 
to walk again… 

One current limitation:  
Required processing 
power – need 
supercomputer in  a box

From CEA-Clinatec

LOOKING FORWARD… EXAMPLE OF A CPS SYSTEM
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BUT COMPUTING SYSTEMS WERE NOT DESIGNED FOR CPS SYSTEMS 

In nearly all hardware and software of computing systems: 
Time is abstracted or even not present at all 

Very few programming languages can express time or timing constraints 
All is done to have the best average performance, not 
predictable performances 

Caches, out of order execution, branch prediction, speculative execution,…  
(Hidden) compiler optimization, call to (time) unspecified libraries 

Energy is also left out of scope 
This can have impact on data movement, optimizations 

Interaction with external world are second priorities vs. 
computation 

Done with interrupts (introduced as an optimization, eliminating unproductive waiting 
time in polling loops) which were design to be exceptional events… 

Etc. 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EXAMPLE OF “TIME” AWARE PROGRAMMING MODEL
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• Beyond predictability by design and beyond worst-
case execution time (WCET) 

• Capability to build trustable systems from 
untrusted components 

• Mastering trustability for complex distributed 
systems, composed of black or grey boxes

Trust is key for critical applications
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System	should	be	autonomous	to	
make	good	decisions	in	all	
conditions

Embedded intelligence needs local high-end computing

Safety will impose that basic 
autonomous functions 
should not rely on “always 
connected” or “always 
available” 

And should not consume most power of an electric car!
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Privacy will impose that some processing  
should be done locally  

and not be sent to the cloud.

Example: detecting elderly 
people falling in their 
home 

Embedded intelligence needs local high-end computing

With minimum power and wiring!
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CEA’s P-Neuro: 
Ultra low power 
local processing 
detecting lying 
people in a room 

Raw data (before 
post-processing): 
• Standing  
• Crouching 
• Lying

Detecting elderly people falling in their home  
Exemple from Global Sensing Technologies
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Dumb sensors Smart sensors: Streaming and  
distributed data analytics 

Bandwidth (and cost)  will require more local processing 

And if you need a response 
in less than 1ms, the server  
has to be in less than 150 Km 
( the speed of light is  
299 792 458 m/s ) 

Fog computing

Embedded intelligence needs local high-end computing
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ENERGY OF SMART LIGHT BULBS

Server in 
Singapore

• 0 W power off 
• 100% energy 
     for the light bulb 
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• 0 W power off 
• 100% energy 
     for the light bulb  

• Energy for the smartphone 
• Wifi energy 
• Home router energy 
• Energy for routing to Singapore 
• Energy of the server for processing 
• Energy for routing from Singapore 
• Home router energy 
• Wifi Energy 
• Energy for the light bulb electronics 

All this multiplied by the number of smart 
light bulbs… 
(And there are 2.5B light bulbs - not yet 
smart -  sold each year…)

Server in 
Singapore

ENERGY OF SMART LIGHT BULBS
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ENERGY OF SMART LIGHT BULBS  
AND WITH THE PERSONAL ASSISTANTS....

Google Assistant Apple Siri Amazon Alexa 
with Zigbee
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ENERGY OF SMART LIGHT BULBS  
AND WITH THE PERSONAL ASSISTANTS....

From https://snips.ai/
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DEEP LEARNING AND VOICE RECOGNITION



!22

" The need for TPUs really emerged about six years ago, 
when we started using computationally expensive deep 
learning models in more and more places throughout our 
products. The computational expense of using these 
models had us worried. If we considered a scenario where 
people use Google voice search for just three minutes a 
day and we ran deep neural nets for our speech 
recognition system on the processing units we were using, 
we would have had to double the number of Google 
data centers!"  

[https://cloudplatform.googleblog.com/2017/04/quantifying-the-performance-of-the-
TPU-our-first-machine-learning-chip.html]

DEEP LEARNING AND VOICE RECOGNITION
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Source from Bill Dally (nVidia) « Challenges for Future Computing Systems »  
HiPEAC conference 2015 

Type of device Energy / 
Operation

CPU 1690 pJ
GPU 140 pJ

Fixed function 10 pJ
FPGA with HLS 

“software programming 
space and not only time”

23



!24

2017: GOOGLE’S CUSTOMIZED HARDWARE…

… required to increase energy efficiency  
with accuracy adapted to the use (e.g. float 16)

Google’s TPU2 : training and inference in a 180 teraflops16 board 
(over 200W per TPU2 chip according to the size of the heat sink)
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… required to increase energy efficiency  
with accuracy adapted to the use (e.g. float 16)

Google’s TPU2 : 11.5 petaflops16 of machine learning number crunching  
(and guessing about 400+ KW…, 100+ GFlops16/W)

Peta = 1015 = million of milliardFrom Google

2017: GOOGLE’S CUSTOMIZED TPU HARDWARE…
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The Hype cycle - 2018

• Deep Learning 
• Virtual assistants 
• DNN Asics 
• Autonomous Driving
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"As soon as it works, no one calls it AI anymore"  

John McCarthy
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KEY ELEMENTS OF ARTIFICIAL INTELLIGENCE

Traditional 
(symbolic) AI 
Algorithms 

Rules…

Analysis of 
“big data” 

Data analytics

ML-based AI: 
Bayesian, …  

* Reinforcement Learning, One-shot Learning,  
Generative Adversarial Networks, etc…

From Greg. S. Corrado,  Google brain team co-founder: 
– “Traditional AI systems are programmed to be clever 
– Modern ML-based AI systems learn to be clever.

Deep 
Learning*

AI
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1943: MCCULLOCH AND PITTS

They laid the foundations of formal Neural Networks

Neurophysiologist and cybernetician
Logician workingin the field of computational neuroscience
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1943: MCCULLOCH AND PITTS
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A « formal » neuron: 

WHAT IS A NEURAL NETWORK?
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The « formal » neuron: 

Vj= W1j.X1+W2j.X2 
It is the definition of an hyperplane 
F(Vj) non linear ∈{-1,1} e.g. sign() function 
X(X1,X2) is “above” or “below” the hyperplane 

WHAT IS A NEURAL NETWORK?
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X1

X2

W1j.X1+W2j.X2

X

W1k.X1+W2k.X2

W1l.X1+W2l.X2

WHAT IS A NEURAL NETWORK?
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Association of neurons to make 
logical functions. 
Example: AND gate

WHAT IS A NEURAL NETWORK?
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MULTILAYER NETWORK

Hyperplane separation

“logic” composition 
 Warren McCulloch and  
Walter Pitts, 1943

= universal approximator
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WHY DOES DEEP LEARNING WORK SO WELL?*  

• Work of Henry W. Lin (Harward) , Max Tegmark (MIT), and David Rolnick (MIT) 
     https://arxiv.org/abs/1608.08225

Function
?

1 megapixel 256 grey level image
2561000000 possible images

For each possible image, we wish to compute the probability 
that it depicts a cat. Then, the function is defined by a list of 
2561000,000 probabilities 
 i.e., way more numbers than there are atoms in our universe 
(about 1078 to 1082 <<< 102,408,240).

It is a cat

It is NOT a cat

It can be done by Neural Networks: 
Universal approximator made 
with neural networks of finite size
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BUT WHAT IS THE TRUE VON NEUMANN ARCHITECTURE?

In “First Draft of a Report on the EDVAC,” the first 
published description of a stored- program binary 
computing machine - the modern computer, John 
von Neumann suggested modelling the computer 
after Pitts and McCulloch’s neural networks.
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BUT WHAT IS THE TRUE VON NEUMANN ARCHITECTURE?

« The McCulloch-Pitts result puts 
an end to this. It proves that 
anything that can be completely 
and unambiguously put into 
words is ipso facto realizable by 
a suitable finite neural network. » 
J . Von Neumann, 1951

Finally 
something that 
can be named 

after me!

But technology was not ready in the 50’s,  
leading to realization with sequential processing
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1949: DONALD HEBB 
 

Hebb’s rule or Hebbian theory: an 
explanation for the adaptation of neurons 
in the brain during the learning process

Basic mechanism for synaptic plasticity: 
an increase in synaptic efficacy arises from 
the presynaptic cell's repeated and 
persistent stimulation of the postsynaptic 
cell. 

Introduced by Donald Hebb in his 1949 
book « The Organization of Behavior »

Psychologist, working in the area of neuropsychology
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1980: KUNIHIKO FUKUSHIMA  

The first Deep Neural Network, inspired by the visual cortex.
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AROUND 1986: GEOFFREY HINTON  
 

He was one of the first researchers who 
demonstrated the use of generalized back-
propagation algorithm for training multi-
layer neural networks.

He co-invented Boltzmann machines with 
David Ackley and Terry Sejnowski.

His other contributions to neural network 
research include distributed representations, 
time delay neural network, mixtures of 
experts, Helmholtz machines and Product of 
Experts

He is now working for Google.

Cognitive psychologist and computer scientist
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AROUND 1985: YANN LE CUN 
 

In 1985, he proposed and published (in French), an early 
version of the learning algorithm known as error 
backpropagation 
Near 1989, he developed a number of new machine 
learning methods, such as a biologically inspired model 
of image recognition called Convolutional Neural 
Networks, the "Optimal Brain Damage" regularization 
methods, and the Graph Transformer Networks method 
which he applied to handwriting recognition and OCR.

The bank check recognition system that he helped 
develop was widely deployed by NCR and other 
companies, reading over 10% of all the checks in the US 
in the late 1990s and early 2000s.

In 2013, LeCun became the first director of Facebook AI 
Research in New York City.
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1990’S NEUROCOMPUTERS...

Philips : L-Neuro 
• 1st Gen 16 PEs 26 MCps (1990) 
• 2nd Gen 12 PEs 720 MCps (1994) 
➢Used in satellite, fruit sorting, PCB inspection, 

sleep analysis, … 

CEA’s MIND machine 
• Hybrid analog/digital: MIND-128 (1986) 
• Fully digital: MIND-1024 (1991)

□ Orange video-grading 
□ Chip alignment 
□ Sleep phase analysis 
□ Image compression 
□ Satellite image analysis 
□ LHC 1st level trigger 
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• ImageNet classification (Hinton’s team, hired by Google)  
• 14,197,122  images, 1,000 different classes 
• Top-5 17% error rate (huge improvement) in 2012 (now ~ 3.5%) 

• Facebook’s ‘DeepFace’ Program (labs headed by Y. LeCun)  
• 4.4 million images, 4,030 identities 
• 97.35% accuracy, vs. 97.53% human performance

From:Y. Taigman,  M. Yang,  M.A. Ranzato,  
“DeepFace: Closing the Gap to Human-Level  
Performance in Face Verification” 

“Supervision” network 
Year: 2012 
650,000 neurons 
60,000,000 parameters 
630,000,000 synapses 

They give the state-of-the-art performance e.g. in image classification

2012: DEEP NEURAL NETWORKS RISE AGAIN
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COMPETITION ON  
IMAGENET !

	

Name!of!the!
algorithm	

Date	 Error!on!test!set	

Supervision	 2012	 15.3%	

Clarifai	 2013	 11.7%	

GoogLeNet	 2014	 6.66%	

	

Humain!level!
(Adrej	Karpathy)	

	 5%!

Microsoft	 05/02/2015	 4.94%	

Google	 02/03/2015	 4.82%	

Baidu/	Deep	Image	 10/05/2015	 4.58%	

Shenzhen	Institutes	of	

Advanced	Technology,	

Chinese	Academy	of	
Sciences	

10/12/2015	

(le	CNN	a	152	

couches!)	

3.57%	

Google	Inception-v3	

(Arxiv)	

2015	 3.5%	

WMW	(Momenta)	 2017	 2.2%	

	 Now	 ?	
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• DNN technic: Fully-CNN + Unpooling (for high resolution segmentation)

PIXEL WISE IMAGE SEGMENTATION



!49

■ DNN technic: Faster-RCNN (or similar: YOLO, SSD…)

IMAGE ROI EXTRACTION AND CLASSIFICATION
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IMAGE ANALYSIS

From Olivier Temam
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Technology 

Object detection

Fine-grained recognition

Accurate pose estimation

2D/3D localisation

Part localisation

Part visibility characterization 

1
2

3

4

5

6

DEEP MANTA
MANY-TASK DEEP NEURAL NETWORK 
FOR VISUAL OBJECT RECOGNITION

Applications 
Driving assistance, autonomous driving 
Smart city 
Video-protection 
Advanced Manufacturing

Performance 
KITTI Benchmark:  
• 1st rank in vehicle orientation estimation 
• Top-10 in object detection 
Runs at 10 Hz on Nvidia Gtx 1080

CVPR 2017 : F. Chabot, M. Chaouch, J. Rabarisoa, C. Teulière and T. Château 
Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from 
monocular image.
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ALPHAGO ZERO: SELF-PLAYING TO LEARN

From doi:10.1038/nature24270 (Received 07 April 2017)
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From Paul Messina, Argonne National Laboratory

ALWAYS MORE COMPUTING RESSOURCES

Target ～ 20-30 MW
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HOUSTON, WE HAVE A PROBLEM…
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From “Total Consumer Power Consumption Forecast”, Anders S.G. Andrae, October 2017

The problem: 
IT projected to challenge future electricity 

supply
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THE END OF MOORE’S LAW

Parameter  
(scale factor = a)

Classic 
Scaling

Current 
Scaling

Dimensions 1/a 1/a

Voltage 1/a 1

Current 1/a 1/a

Capacitance 1/a >1/a

Power/Circuit 1/a2 1/a

Power Density 1 a
Delay/Circuit 1/a ~1

Source: Krisztián Flautner “From niche to mainstream: can critical systems 
make the transition?” 

Everything was easy: 
• Wait for the next 

technology node 
• Increase 

frequency 
• Decrease Vdd  
⇒ Similar increase of 

sequential 
performance 

⇒ No need to 
recompile (except 

if architectural 
improvements)
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THE END OF MOORE’S LAW

Parameter  
(scale factor = a)

Classic 
Scaling

Current 
Scaling

Dimensions 1/a 1/a

Voltage 1/a 1

Current 1/a 1/a

Capacitance 1/a >1/a

Power/Circuit 1/a2 1/a

Power Density 1 a
Delay/Circuit 1/a ~1

Source: Krisztián Flautner “From niche to mainstream: can critical systems 
make the transition?” 

DENNARD SCALING
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Exponential increase of performances in 33 years

Summit – 2018  
200 PFLOPS (2x1017 FLOPS)

Cray 2 – 1985  
2 GFLOPS (2x109 FLOPS)

X 100 000 000 
in 33 years

Production car of 1985 
Lamborghini Countach 5000QV 
Max speed 300 Km/h

Star Trek Enterprise  
Year: about 2290 
27 times the speed of light?

To infinity and beyond…
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MOORE ’S LAW AND DENNARD SCALING

Source from C Moore, « Data Processing in ExaScale-Class 
Computer Systems », Salishan, April 2011

Moore’s law: 
Transistor increase

Stagnation…
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22FD

28nm

14nm

10nm

7nm

5nm

Next	Gen

FinFET

Mechanical	switches

Hy
br
id
		

lo
gi
c	 Steep	slope	devices

Si	Quantum	bits

Disruptive	scaling

Alternative	to	scaling	and	
diversification

Monolithic	3D		for	3D	VLSI

2017

2018

12FD
FDSOI

Technology evolution
Silicon	Quantum	bits

Non	planar	/	trigate	/	stacked	Nanowires
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COST OF MOVING DATA -> COMPUTING IN MEMORY

Source: Bill Dally, « To ExaScale and Beyond » 
www.nvidia.com/content/PDF/sc_2010/theater/Dally_SC10.pdf 
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SPIKE-BASED CODING

 
layer 1

Correct 
Output

29
x2

9 
pi

xe
ls
 

 8
41

 a
dd

re
ss

es

Pixel 
brightness

Spiking frequency
V

t

fMIN

fMAX

Rate-based  
input coding

Time

 
layer 2

 
layer 3

 
layer 4
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Neuram3	1st	
chip

IBM	True	
North

Technology 28	nm	FDSOI 28nm	CMOS
Supply	Voltage 1	V 0.7V
Neuron	Type Analog	 Digital
Neurons	per	core 256 256
Core	Area 0.36	mm2 0.094	mm2

Computation Parallel	
processing

Time	
multiplexing

Fan	In/Out 2k/8k 256/256
Synaptic	Operation	per	Second	
per	Watt

300	GSOPS/
W*1

46	GSOPS/W

Energy	per	synaptic	event <2	pJ*2 10	pJ
Energy	per	spike <0.375	nJ*3 3.9	nJ

∗ 1		At	100Hz	mean	firing	rate,	by	appending	4	local-core	destinations	per	spike,	400	k	events	will	be	broadcast	to	4	cores	with	
25%	connectivity	per	event.	400	k	x	1	k	x	25%	/	300	μ W	=	300	GSOPS/W
∗ 2	In	case	of	25%	match	in	each	core,	energy	per	synaptic	event	=	energy	per	broadcast	/	(256*25%)	=120pJ/64	=	2	pJ
∗ 3	Energy	per	spike	=	total	power	consumption	/	spikes	numbers	=	300	uW/800	k	=	0.375	nJ

NEUROMORPHIC ACCELERATOR: 
COMPUTE AND MEMORY TOGETHER IN 

DYNAPS-SL (INI-ZURICH)
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post-synaptic	
Neuron	

pre-synaptic	
Neuron

Neuron

Axon
Dendrite

Electrical	 
signal

Synapse

Δt = tpost - tpre

S
yn

ap
tic

 w
ei

gh
t 

m
od

ifi
ca

tio
n 

(%
)

STDP = correlation 
detector 

➔ Possible 
learning model of 

the brain?

tpre tpost<tpretpost <

Causality 
Potentiation (LTP)

Anti-Causality 
Depression (LTD)

Learning from neuroscience: STDP  
(Spike Timing Dependent Plasticity)
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PCM 
GST 
GeTe 
GST + HfO2 

M.Suri, et. al, IEDM 2011	
M.Suri, et. al, IMW 2012 , JAP 2012	
O.Bichler et al. IEEE TED 2012	
M.Suri et al., EPCOS 2013	
D.Garbin et al., IEEE Nano 2013

CBRAM
Ag / GeS2	

OXRAM

D.Garbin et al. IEDM 2014	
D.Garbin et al., IEEE TED 2015 

TiN/HfO2/Ti/TiN	

Thermal	
effect

Electrochemical	
effect

Electronic	effect	
oxygen	vacancies

Investigating RRAM as synapses 
Unsupervised learning (information coded by Spikes)
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Neurons activity

Network topology

Input stimuli

N2-D2 
Neuromorphic 

simulator

128

128CMOS	Retina	
16,384	spiking	pixels

1st	layer

2nd	layer

Lateral	
inhibition

Lateral	
inhibition

…………

Learning rule

-100 -50 0 50 100
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ha

ng
e 
ΔW

 (%
)

ΔT = tpost - tpre (ms)

 Exp. data [Bi&Poo]
 LTP
 LTD
 LTP simulation
 LTD simulation

Neuron model 

Example: Leaky Integrate & 
Fire (LIF) neuron 

𝑢 = 𝑢 . 𝑒−
𝑡𝑠𝑝𝑖𝑘𝑒 − 𝑡𝑙𝑎𝑠𝑡_𝑠𝑝𝑖𝑘𝑒

𝜏𝑙𝑒𝑎𝑘 + 𝑤

Synaptic model 

0

20

40

0 20 40 60 80 100

C
on

du
ct

an
ce

 (n
S)

Pulse number

0

20

40

0 20 40 60 80 100

C
on

du
ct

an
ce

 (n
S)

Pulse number

Neuron membrane potential

Synaptic 
weights

TLTP

 Complete tool flow for bio-inspired synapses, neurons and learning rules network simulations
[O.	Bichler	et	al.,	NanoArch’2014]

Bio-inspired models exploration
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; Database 
[database] 
Type=MNIST_IDX_Database 
Validation=0.2 

; Environment 
[env] 
SizeX=24 
SizeY=24 
BatchSize=128 

[env.Transformation] 
Type=PadCropTransformation 
Width=[env]SizeX 
Height=[env]SizeY 

[env.OnTheFlyTransformation] 
Type=DistortionTransformation 
ApplyTo=LearnOnly 
ElasticGaussianSize=21 
ElasticSigma=6.0 
ElasticScaling=36.0 
Scaling=10.0 
Rotation=10.0 

; First layer (convolutionnal) 
[conv1] 
Input=env 
Type=Conv 
KernelWidth=5 
KernelHeight=5 
NbChannels=6 
Stride=2 
ConfigSection=common.config 

; Second layer (convolutionnal) 
[conv2] 
Input=conv1 
Type=Conv 
KernelWidth=5 
KernelHeight=5 
NbChannels=12 
Stride=2 
ConfigSection=common.config 

; Third layer (fully connected) 
[fc1] 
Input=conv2 
Type=Fc 
NbOutputs=100 
ConfigSection=common.config 

; Output layer (fully connected) 
[fc2] 
Input=fc1 
Type=Fc 
NbOutputs=10 
ConfigSection=common.config 

; Softmax layer 
[soft] 
Input=fc2 
Type=Softmax 
NbOutputs=10 
WithLoss=1 
ConfigSection=common.config 

; Common solvers config 
[common.config] 

N2D2 INI network description file

Layer-wise detailed memory 
and computing requirements

Results visualization: 
- Pixel-wise segmentation 
- ROI bounding box extraction 

and classification

Pixel-wise and object wise 
confusion matrix reportingLayer-wise output visualization 

and data-range analysis

Dataflow visualization

Layer-wise weights and kernels 
visualization, distribution and 

data-range analysis

Fast and accurate Deep Neural Networks exploration
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AppObjectRecognition/ 

Live object recognition 
application 

based on ILSVRC2012 (ImageNet) 
dataset

AppFaceDetection/ 

Live face detection application, 
with gender recognition 

based on the IMDB-WIKI dataset

AppRoadDetection/ 

Simple road segmentation 
application 

based on the KITTI Road dataset

N2D2 is available at https://github.com/CEA-LIST/N2D2/ 
• Smallest dependencies and requirements among major frameworks: 

GCC 4.4 or Visual Studio 12 (2013) / OpenCV 2.0.0 
• Easily extendable with a “plug-and-play” modular system for user-made modules

Development of efficient solutions for Deep Learning Inference

Example of use of N2D2

https://github.com/CEA-LIST/N2D2/
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2-PCM synapses for unsupervised cars trajectories extraction 

CBRAM binary synapses for unsupervised MNIST handwritten digits 
classification with stochastic learning

Equivalent	
2-PCM	synapse

I	=	ILTP	-	ILTD

ILTD

ILTP

From	spiking	pre-synaptic	
neurons	(inputs)VRD

Spiking	post-
synaptic	neuron	

(output)

PCM 

Crystallization/ 
Amorphization

CBRAM 

Forming/Dissolution of 
conductive  filament

[O.	Bichler	et	al.,	Electron	Devices,	IEEE	Transactions	on,	2012]

[M.	Suri	et	al.,	IEDM,	2012]

NVM synapses implementations
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Test vehicle for spiking neural networks in 130nm CMOS with OxRAM elements 
between Metal 4 and Metal 5 of the back-end is done at CEA LETI. 

Area is 1,8mm². It contains 10 neurons and 1440 synapses, (11,5k OxRAMs) 

It can run MNIST (Characters recognition)

SPIRIT test chip

European project: NeuRAM3 
NEUral computing aRchitectures in Advanced Monolithic 3D-VLSI nano-technologies

NVM synapses implementations
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REDUCING COMMUNICATIONS:  
3D INTEGRATION COUPLED WITH RRAM
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Photonic

SW tools, benchmarks  and 
design methodologies

High Density 3D

New Memory 
Technologies

Neuromorphic

CoolCubeTM 

Heterogeneity & everything close

Neuro chiplet Scaling with FDSOI, 
FF and CoolCubeTM

Active silicon interposer, 
High density 3D

Photonic

New Memories 
(NVM) close to 
the logic

SW tools, benchmarks 
and design methodologies energy aware

POTENTIAL SOLUTION FOR COGNITIVE CYBER PHYSICAL 
SYSTEMS

Time



PARALLELISM AND SPECIALIZATION ARE NOT FOR FREE…

Frequency limit   
➔ parallelism  

Energy 
efficiency ➔ 

heterogeneity

Ease of 
programming
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MANAGING COMPLEXITY….

 “Nontrivial software written with threads, 
semaphore, and mutexes is 
incomprehensible by humans” 

         Edward A. Lee 
          

The future of embedded software 
         ARTEMIS 2006

Parallelism, multi-cores, heterogeneity, 
distributed computing,  seems to be too 
complex for humans ?



Managing complexity

Cognitive solutions for complex 
computing systems: 
• Using AI and optimization 

techniques for computing 
systems 
• Creating new hardware 
• Generating code 
• Optimizing systems 

• Similar to Generative design 
for mechanical engineering 



!77

USING AI FOR MAKING CPS SYSTEMS:  “GENERATIVE DESIGN” APPROACH 

Motorcycle swingarm: the piece that hinges the rear wheel to the bike’s frame

The user only states desired goals and constraints 
-> The complexity wall might prevent explaining the 
solution  

“Autodesk”
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“Neural Architecture Search”, using a 
recurrent neural network to compose 
neural network architectures using 
reinforcement learning on CIFAR-10 
(character recognition)

2017: GOOGLE; USING DEEP LEARNING  TO DESIGN DEEP LEARNING

From arXiv:1611.01578v2, Barret Zoph, Quoc V. Le 
Google Brain

Several other interesting “Auto-ML”  
research projects
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■ Dynamic software applications with 
performance constraints, e.g., 
throughput 

■ Standard Linux-based operating 
system 

■ Multi/many core SoCs 

Source: NXP i.MX6

eLinux

androi
d

Source: ST/CEA 
■ Q-learning energy manager 

− On-line, gradually learn the SoC 
operating points such that 
performance constraints are 
respected and energy 
consumption is reduced 

− No need to model the dynamics of 
the system 

Up to 44% energy reduction, wrt. state-of-the-art 
(proportional-integral and non-linear controllers)

Q-learning based SoC energy  
management
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• Ne-XVP project – Follow-up of 
the TriMedia VLIW (https://
en.wikipedia.org/wiki/Ne-XVP ) 

• 1,105,747,200 heterogeneous 
multicores in the design space 

• 2 millions years to evaluate all 
design points 

• AI inspired techniques allowed 
to reduce the induction time to 
only few days 

=> x16 performance increase

EXAMPLE: DESIGN SPACE EXPLORATION FOR DESIGN 
MULTI-CORE PROCESSORS1 (2010)

1 M. Duranton et all., “Rapid Technology-Aware Design Space Exploration for Embedded  HeterogeneousMultiprocessors” in Processor and System-on-Chip 
Simulation, Ed. R. Leupers, 2010 

https://en.wikipedia.org/wiki/Ne-XVP
https://en.wikipedia.org/wiki/Ne-XVP
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• Describing what the program should accomplish, rather than describing how to 
accomplish it as a sequence of the programming language primitives. 

• For example, describe the concurrency of an application, not how to parallelize 
the code for it. 

• (Good) compilers know better about architecture than humans, they are better at 
optimizing code…

PROGRAMMING 2.0: LET THE COMPUTER DO THE JOB:
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Where it come from?



HiPEAC's mission is to steer and increase the 
European research in the area of high-
performance and embedded computing systems,  
 
and stimulate cooperation between 
a) academia and industry and  
b) computer architects and tool builders.

HiPEAC
=

High-Performance and Embedded 
Architecture and Compilation
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M
EM

B
ER

SH
IP

Associated members: 76  Total: 1496

13 partners, 522 members, 99 
associated members, 423 
affiliated members and 855 
affiliated PhD students from 363 
institutions in 40 countries. 

hipeac.net/members/stats/map
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HIPEAC STRUCTURE

WP1 Growing the communities

WP2 Connecting 
the communities

WP3 Dissemination

WP4 Roadmapping

Management
• Membership management 
• Growing the industrial community 
• Growing the innovator community 
• Growing the stakeholder community 
• Growing the new member states membership

• Conference 
• ACACES summer school 
• Computing systems weeks 
• Stimulating collaboration 
• HiPEAC Jobs

• Consultation meetings 
• HiPEAC Vision 2019 
• Disseminating the HiPEAC Vision

• Project management 
• Financial management 
• Industrial Advisory board

• Communications 
• Road show 
• Awards 
• Website
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The	HiPEAC	Vision	Document	is	a	deliverable	of	the	coordination	and	support	action	
on	High	Performance	and	Embedded	Architecture	and	Compilation		

The	last	HiPEAC	Vision	Document	was	published	in	January	2017.	

The	next	version	is	on-going	(printed	version	for	end	2018)	

THE HIPEAC VISION

2009 20112008 2013 2015 2017

January	2017	version	is	available	at:
http://hipeac.net/vision
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STRUCTURE	HIPEAC	VISION	2017

Recommen
- 

dations

Society

Market Technology

Position of 
Europe
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HiPEAC Vision

http://hipeac.net/vision

FOR FURTHER READING
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CONCLUSION: WE LIVE AN EXCITING TIME!

“The best way to predict the future is to invent it.”  
Alan Kay 
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Centre	de	Grenoble	
17	rue	des	Martyrs	

38054	Grenoble	Cedex

Centre	de	Saclay	
	Nano-Innov	PC		172	

91191	Gif	sur	Yvette	Cedexmarc.duranton@cea.fr

Thank you for your attention

Special thank you to Olivier Bichler, Denis Dutoit, 
Christian Gamrat, Carlo Reita and Yann LeCun for their 
slides I borrowed.


