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“The best way to predict the future is to invent it.”

Alan Kay



Entering in
Human and machine collaboration era

ENABLED BY ARTIFICIAL INTELLIGENCE
(AND DEEP LEARNING)




CYBER PHYSICAL ENTANGLEMENT

I Computer are not anymore a “PC”

I They get input from the real world with sensors,
not anymore with keyboards

I They interact with the world without screen
mewThanks to progress in Deep Learning for example
I They are everywhere, morph in our environment




Smart sensors

Internet of
Things

Cloud / HPC Big Data

Data Analytics /
Cognitive
computing




HOW MUCH COULD WE SAVE
WITH CONNECTED MACHINES?

A 1 % improvement in efficiency in these five industries

could add up to 5276 Billion over 15 vears

OIL & GAS

ECONOMICAL DRIVE OF
CONNECTED THINGS:
BETTER EFFICIENCY IN
RESOURCES AND
ENERGY

HEALTHCARE

AVIATION

by helping by monitoring | by cutting fuel

workers equipment and operating

locate and better and costs, and

use mobile predicting by making
smart engines | equipment other potential  equipment
that tell crews | more network more available

efficiently problems and productive

maintenance




ENABLING EDGE INTELLIGENCE
C2PS: COGNITIVE ( CYBERNETIC* AND PHYSICAL ) SYSTEMS

Enabling Intelligent data

processing at the edge:
Fog computing
Edge computing
Stream analytics
Fast data...

Smart sensors

Cyber Physical Internet of
Entanglement Things

Cloud / HPC Big Data

Data Analytics / V

Cognitive =

computing True
collaboration
between edge

Transforming data into information as early as possible ﬂ;‘gf:li 330' the

* As defined by Norbert Wiener: how humans, animals and machines control and communicate with each other. 7




1948: NORBERT WIENER

Threshold / Reference

¥
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Difference Action

Reaction Feedback ”

A Cybernetic Loop




LOOKING FORWARD... EXAMPLE OF A CPS SYSTEM

N ) )
N » x ® IMAGINE  Direct Brain Computer
é L/ Interface (BCI)
g AR

Here allowing a paraplegic

v, to walk again...
A PN B N

WIMAGINE® Implant

w“~ One current limitation:
Required processing

£

e ~.—  power — need
ITOR supercomputer in a box

. -~
DECODE

From CEA-Clinatec




BUT COMPUTING SYSTEMS WERE NOT DESIGNED FOR CPS SYSTEMS

In nearly all hardware and software of computing systems:
I'Time is abstracted or even not present at all

m==\/ery few programming languages can express time or timing constraints

L'All is done to have the best average performance, not

predictable performances

mumCaches, out of order execution, branch prediction, speculative execution,...
m=w(Hidden) compiler optimization, call to (time) unspecified libraries

I'Energy is also left out of scope

m=wThis can have impact on data movement, optimizations

I Interaction with external world are second priorities vs.

computation

m==Done with interrupts (introduced as an optimization, eliminating unproductive waiting
time in polling loops) which were design to be exceptional events...

I Etc.



J{_ EXAMPLE OF “TIME” AWARE PROGRAMMING MODEL

actual coef
values
IN_fe1 ) ouT_fe1
o]
lines @E outl
node vert scaler (param float coefs|[N][64], R =
in pixel lines[N][240], wtes QY
out pixel outl[240])
{ pixel IN fel[3][240] ... (* other IN feN declarations * lisible_PIP_line
pixel OUT fel[240] ... (* other OUT feN declarations *)

index i [240]

lines => taps => IN fel, IN fe2, IN fe3

IN fel -> FI1tEltl (coefs) => OUT fel

IN fe2 => FItEIlt2 (coefs) => OUT fe2

IN. fe3 =2 FIEtElItS (coers) > OUr fes

outlli] = (OUD_felflil + OUT fel[i] + OUT fe3[il)/3
}

pixel N port buffer([N][240]

pixel IN YUV2RGB[240]

extern clock frame clock 30 Hz

clock visible output line 1080@frame clock

clock VlSlble PIP line visible line clock [500..619]

N port buffer -> vert scaler (some coefs) -> IN YUVZRGB every
visible PIP line o



Trust is key for critical applications

 Beyond predictability by design and beyond worst-
case execution time (WCET)
« Capability to build trustable systems from

untrusted components
« Mastering trustability for complex distributed

systems, composed of black or grey boxes




Embedded intelligence needs local high-end computing

System should be autonomous to
make good decisions in all
conditions
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And should not consume most power of an electric car!
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Embedded intelligence needs local high-end computing

The EU General Data Protection Regulation
(GDPR) is the most important change in
data privacy regulation in 20 years -

. we're here to make sure you're

prepared. -

Privacy will impose that some processing
should be done locally
and not be sent to the cloud.

With minimum power and wiring!




Detecting elderly people falling in their home
Exemple from Global Sensing Technologies

CEA’s P-Neuro:
Ultra low power
local processing
detecting lying
people in a room

Raw data (before
post-processing):

« Crouching




Embedded intelligence needs local high-end computing

And if you need a response

in less than 1ms, the server Fog computing
has to be in less than 150 Km
( the speed of light is
299 792 458 m/s )
[ 4 > P
-, ' 4
«0(: ©,-0¢
& & Ann
Dumb sensors Smart sensors: Streaming and
distributed data analytics

Bandwidth (and cost) will require more local processing




ENERGY OF SMART LIGHT BULBS

B

"I~
(((g)))) @ ZigBee

N\

Server in
Singapore

o~
0

L
| o
* 0 W power off
* 100% energy .

for the light bulb




ENERGY OF SMART LIGHT BULBS

Energy for the smartphone
Wifi energy
Home router energy
Energy for routing to Singapore
Energy of the server for processing
Energy for routing from Singapore
Home router energy
Wifi Energy o
Energy for the light bulb electronics p

€ i

All this multiplied by the number of smart

light bulbs... D serverin
(And there are 2.5B light bulbs - not yet ® Singapore
0 W power off gnart - sold each year...)
100% energy
for the light bulb .



ENERGY OF SMART LIGHT BULBS
AND WITH THE PERSONAL ASSISTANTS....

Amazon Alexa
with Zigbee

Apple Siri

Google Assistant

19



ENERGY OF SMART LIGHT BULBS
AND WITH THE PERSONAL ASSISTANTS....

°
SnlpS Snips AIR  Developers Enterprise  Technology Token Sale m

Voice assistants are broken

© ® & ®

They offer no privacy They offer no security They exploit developers They exploit users
Sending conversations to the Centralizing a large amount Developers have no access to Companies building
cloud means anyone could of user data increases the their users’ data, and are at assistants use and monetize
access your private life and risk of massive data breaches the mercy of app stores than their users’ data without
that of your family. and mass surveillance can kill their apps. giving them back

From https://snips.ai/
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DEEP LEARNING AND VOICE RECOGNITION

100%
According to Microsoft's
speech group:
Using DL
10%
4% ‘.’ Google Assistant
0% ®
1%

1990 2000 2010

Deep Learning in Speech Recognition

21




DEEP LEARNING AND VOICE RECOGNITION

" The need for TPUs really emerged about six years ago,
when we started using computationally expensive deep
learning models in more and more places throughout our
products. The computational expense of using these
models had us worried. If we considered a scenario where
people use Google voice search for just three minutes a
day and we ran deep neural nets for our speech
recognition system on the processing units we were using,
we would have had to double the number of Google
data centers!”

[https://cloudplatform.googleblog.com/2017/04/quantifying-the-performance-of-the-
TPU-our-first-machine-learning-chip.htmil]
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CPU
GPU
Fixed' fq n'c_;tion
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1690 pJ
140 pJ
10 od

FPGA with HLS

“software programming
space and not only time”

Source from Bill Dally (nVidia) « Challenges for Future Computing Systems »

HiIPEAC conference 2015
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2017: GOOGLE’S CUSTOMIZED HARDWARE...

.. required to increase energy efficiency
with accuracy adapted to the use (e.g. float 16)

Google’s TPUZ2 : training and inference in a 180 teraflops, board
(over 200W per TPUZ2 chip according to the size of the heat sink)

24




2017: GOOGLE’S CUSTOMIZED TPU HARDWARE...

... required to increase energy efficiency
with accuracy adapted to the use (e.g. float 16)

Google’s TPU2 : 11.5 petaflops, of machine learning number crunching
(and guessing about 400+ KW..., 100+ GFlops,/W)

From Google Peta = 1015 = million of milliard 25
e



expectations

The Hype cycle

2018

Digital Twin
Biochips
Smart Workspace Deep Neural Nets (Deep Learnin H
Brain-Computer Interface Rt (Deep 9 * Deep Learning
Autonomous Mobile Robots & .. e . .
aling  Virtual assistants
Deep Neural Network ASICs § l. VqtylAuanl  DNN Asics
& - . . - -
Quantum Computing SROCHI~ « Autonomous Driving
5G
Volumetric Displays SVUIOPTsoRES
Self-Healing System Technology Autonomous Driving Level 4
Conversational Al Platform
Autonomous Driving Level 5 Mixed Reality
Edge Al
Exoskeleton )
Blockchain for Data Security :"”‘;&mm’h‘c
Knowledge Graphs ——
4D Printing
Artificial General Intelligence
Smart Fabrics
Smart Dust .
Flying Autonomous Vehicles Augmented Reality
Biotech — Cultured or Artificial Tissue
As of August 2018
Innovation ﬁ:’;:ﬁ:{: Trough of Slope of Plateau of
Trigger ) Disillusionment Enlightenment Productivity

Expectations

Plateau will be reached:

O less than 2 years

@ 2toS5years @ 5to 10 years

time

A more than 10 years

® obsolete before plateau

26



"As soon as it works, no one calls it Al anymore"”

John McCarthy



KEY ELEMENTS OF ARTIFICIAL INTELLIGENCE

Al

Traditional -
: Analysis of
(SymbOhC) AI “big datau

Algorithms Data analytics
Rules.. d

ML-based Al:
Bayesian, ...

* Reinforcement Learning, One-shot Learning,
Generative Adversarial Networks, etc...

From Greg. S. Corrado, Google brain team co-founder:
— “Traditional Al systems are programmed to be clever
— Modern ML-based Al systems learn to be clever.

28



1943: MCCULLOCH AND PITTS

Inputs  Weights

Threshold T

In

Neurophysiologist and cybernetician

Logician workingin the field of computational neuroscience

They laid the foundations of formal Neural Networks

29



1943: MCCULLOCH AND PITTS

BULLETIN OF
MATHEMATICAL BIOPHYSICS
VOLUME 5, 1943

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS

From THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINE,
DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE,
AND THE UNIVERSITY OF CHICAGO

Because of the “all-or-none” characler of nervous activity, neural
events and the relations among them can be treated by means of propo-
sitional logie. It is found that the behavior of every net can be described
in these terms, with the addition of more complicated logical means for
nets containing circles; and that for any logical expression satisfying
certain conditions, one can find a net behaving in the fashion it describes.
It is shown that many particular choices among possible neurophysiologi-
cal assumptions are equivalent, in the sense that for every net behav-
ing under one assumption, there exists another net which behaves un-
der the other and gives the same results, although perhaps not in the
same time. Various applications of the calculus are discussed.

30



WHAT IS A NEURAL NETWORK?

A « formal » neuron:

inputs weights

X, o activation function

- output
: Vo (V)

. ’ VJ > Xoul
Xn o

weighted sum

31



WHAT IS A NEURAL NETWORK?

The « formal » neuron:

inputs weights

X, @ activation function

2 tput
X @ S Vv ’ f (Vj ) >ouxopmu

Vi= W X+ W X5

It is the definition of an hyperplane

F(V;) non linear e{-1,1} e.g. sign() function
X(X{,X5) is "above” or "below” the hyperplane

32



WHAT IS A NEURAL NETWORK?

W, X +W,5,. X,

W 3. X, + Wi X,

W, . X{+W,, . X,

33



LOGICAL CALCULUS FOR NERVOUS ACTIVITY

WHAT IS A NEURAL NETWORK?

Association of neurons to make
logical functions.
Example: AND gate

0=+1.5

34



Input values

utput values

MULTILAYER NETWORK

Input layer Hyperplane separation

welght matrix

“logic” composition
output layer  Warren McCulloch and
Walter Pitts, 1943

= universal approximator

35



WHY DOES DEEP LEARNING WORK SO WELL?*

‘1 1 megapixel 256 grey level image
‘ﬁvf 2561000000 possible images

AN It can be done by Neural Networks:
\)) Universal approximator made
& with neural networks of finite size

yp Itis a cat

.'"«,' /’ Itis NOT a cat

For each possible image, we wish to compute the probability
that it depicts a cat. Then, the function is defined by a list of
2561000,000 probabilities

l.e., way more numbers than there are atoms in our universe
(about 1078 to 1082 <<< 1(2,408,240),

«  Work of Henry W. Lin (Harward) , Max Tegmark (MIT), and David Rolnick (MIT)
https://arxiv.org/abs/1608.08225
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BUT WHAT IS THE TRUE VON NEUMANN ARCHITECTURE?

In “First Draft of a Report on the EDVAC,” the first
published description of a stored- program binary
computing machine - the modern computer, John
von Neumann suggested modelling the computer
after Pitts and McCulloch’s neural networks.



BUT WHAT IS THE TRUE VON NEUMANN ARCHITECTURE?

an end to this. It proves that
anything that can be completely
and unambiguously put into
words is ipso facto realizable by

J . Von Neumann, 1951

But technology was not ready in the 50’s,
leading to realization with sequential processing

« The McCulloch-Pitts result puts

a suitable finite neural network. »

Finally
something that
can be named
after me!

Memory
X \ 4
Arithmptic
Control | ogic
Unit || Unit

| Input || Output ]
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1949: DONALD HEBB

Hebb’s rule or Hebbian theory: an
explanation for the adaptation of neurons
in the brain during the learning process

Basic mechanism for synaptic plasticity:
an increase in synaptic efficacy arises from
the presynaptic cell's repeated and
persistent stimulation of the postsynaptic
cell.

Psychologist, working in the area of neuropsychology

Introduced by Donald Hebb in his 1949
book « The Organization of Behavior »
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1980: KUNIHIKO FUKUSHIMA

The first Deep Neural Network, inspired by the visual cortex.

Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position

Kunihiko Fukushima

NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan
——— CES0CCHON O -

— wisual orea

fﬁm‘lﬁa‘“-‘w-‘w” 'w-aw ‘.7‘::',”"'
- o AR o " b modole syropses
%—’Uu—*lkn—’uu—’lk:—’uu—*lh e —» smasfote syrcomes
Pig. |. Correspondence betwoen the hierarchy model by Hubel and Wiesel, and the nearal network of the seccogaitron

Fig. 2. Schematic dsagram illestrating the
Intercomnections hetween liyors = the

DEOCOENITTON

Biol. Cybernetics 36, 193-202 (1980)
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AROUND 1986: GEOFFREY HINTON

He was one of the first researchers who
demonstrated the use of generalized back-
propagation algorithm for training multi-
layer neural networks.

He co-invented Boltzmann machines with
David Ackley and Terry Sejnowski.

His other contributions to neural network
research include distributed representations,
time delay neural network, mixtures of Cognitive psychologist and computer scientist
experts, Helmholtz machines and Product of

Experts

He 1s now working for Google.

41
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AROUND 1985: YANN LE CUN

In 1985, he proposed and published (in French), an early
version of the learning algorithm known as error
backpropagation

Near 1989, he developed a number of new machine
learning methods, such as a biologically inspired model
of image recognition called Convolutional Neural
Networks, the "Optimal Brain Damage" regularization
methods, and the Graph Transformer Networks method
which he applied to handwriting recognition and OCR.

The bank check recognition system that he helped
develop was widely deployed by NCR and other
companies, reading over 10% of all the checks in the US
in the late 1990s and early 2000s.

In 2013, LeCun became the first director of Facebook Al
Research in New York City.

42



1990’'S NEUROCOMPUTERS...

Philips : L-Neuro

* 1st Gen 16 PEs 26 MCps (1990

« 2nd Gen 12 PEs 720 MCps (1994)

> Used in satellite, fruit sorting, PCB inspection,
sleep analysis, ...

CEA’s MIND machine
» Hybrid analog/digital: MIND-123
 Fully digital: MIND-1024 (1991)

Orange video-grading
Chip alignment

Sleep phase analysis
Image compression
Satellite image analysis

LHC 1st level trigger v

43



2012: DEEP NEURAL NETWORKS RISE AGAIN

They give the state-of-the-art performance e.g. in image classification

ImageNet classification (Hinton’s team, hired by Google)

* 14,197,122 images, 1,000 different classes
* Top-5 17% error rate (huge improvement) in 2012 (now ~ 3.5%)

AN R , EENSENE=ZSSNZEEN Supervision” network
AN e\ e A\ NSRCZSEDELEZEE]  Year: 2012

Ll L El L PR PR 650,000 neurons

Il Vids | 171 Il

IEEFEIMEEE 60,000,000 parameters

NENNELIN
' 1] i 630,000,000 synapses

Facebook’s ‘DeepFace’ Program (labs headed by Y. LeCun)

* 4.4 million images, 4,030 identities
* 97.35% accuracy, vs. 97.53% human performance

4

2l\alz
C =
= r—
4 | 4
w v
g e
IR
&

o

From:Y. Taigman, M. Yang, M.A. Ranzato,
“DeepFace: Closing the Gap to Human-Level
Performance in Face Verification”

g:

Comste_Fockhort_0000 o9 frortahation L Tadaded2 ) 2 I MaluTulb  haSaSed
Oetection & Locabeton 015201520 182042 e Fars) 05533 S25a2% o

Figure 2. Outline of the Deep Face architecture. A front-end of a single convolution-pooling-comvolution filtering on the rectified input, followed by three

locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at cach layer. The net includes more than 120 million
parameters, where more than 95% come from the local and fully connected layers.

44



ImageNet: Classification
Y LeCun

# Give the name of the dominant object in the image

# Top-5 error rates: if correct class is not in top 5, count as error
» Black:ConvNet, Purple: no ConvNet




COMPETITION ON
IMAGENET !

Name of the

algorithm

Supervision

Clarifai

GooglLeNet

Humain level
(Adrej Karpathy)

Microsoft
Google
Baidu/ Deep Image

Shenzhen Institutes of
Advanced Technology,

Chinese Academy of
Sciences

Google Inception-v3
(Arxiv)

WMW (Momenta)

2012

2013

2014

05/02/2015
02/03/2015

10/05/2015

10/12/2015
(le CNN a 152
couchesl)

2015

2017

Now

BEror on test set

15.3%

11.7%

6.66%

5%

4.94%

4.82%

4.58%

3.57%

3.5%

2.2%
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f Deep Learning is Everywhere Y LeCun

(ConvNets are Everywhere)

# Lots of applications at Facebook, Google, Microsoft, Baidu, Twitter, IBM...

» Image recognition for photo collection search
» Image/Video Content filtering: spam, nudity, violence.
» Search, Newsfeed ranking

# People upload 800 million photos on Facebook every day

» (2 billion photos per day if we count Instagram, Messenger and Whatsapp)

# Each photo on Facebook goes through two ConvNets within 2 seconds

» One for image recognition/tagging

» One for face recognition (not activated in Europe).

i Soon ConvNets will really be everywhere:

» self-driving cars, medical imaging, augemnted reality, mobile devices, smart
cameras, robots, toys.....

47



PIXEL WISE IMAGE SEGMENTATION

DNN technic: Fully-CNN + Unpooling (for high resolution segmentation)

Input Image FCN-8s

48



IMAGE ROI EXTRACTION AND CLASSIFICATION

= DNN technic: Faster-RCNN (or similar: YOLO, SSD...)

]

Ld

bus - 0.965

" traffic light - 0866 |

traffic light - 0.887 STl %) | R ous 0 807

person




Y LeCun

rFa N




IMAGE ANALYSIS

Detecting Cancer Metastases

Tumor localization score ' -
(FROC):

Pathologist: 0.73
Al model: 0.89
(better)

Detecting Cancer
Metastases on Gigapixel
Pathology Images (2017)

From Olivier Temam
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DEEP MANTA

MANY-TASK DEEP NEURAL NETWORK
FOR VISUAL OBJECT RECOGNITION

Applications Technology
Driving assistance, autonomous driving Object detection
Smart city

Video-protection

Advanced Manufacturing Fine-grained recognition

Accurate pose estimation

2D/3D localisation

Part localisation

Part visibility characterization

Performance

KITTI Benchmark:

* 1st rank in vehicle orientation estimation
* Top-10 in object detection

Runs at 10 Hz on Nvidia Gtx 1080

B Y]
---n--nﬁa--ﬂ-m-- CVPR 2017 : F. Chabot, M. Chaouch, J. Rabarisoa, C. Teuliére and T. Chateau
EBETT L T D L G T el R O O Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from
SIS RS S O R L T L monocular image. 52
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ALPHAGO ZERO: SELF-PLAYING TO LEARN

Al pga?tig %

. -
..0 -

e _ -

From doi:10.1038/nature24270 (Received 07 April 2017)



ALWAYS MORE COMPUTING RESSOURCES

Roadmap for Integration of Deep Leaming and Simulation for Predictive Oncology

A Deep hyperparameter optimized
H H rsistent agglomerative ensemble
1YF Machine Learning Approaches syl
rescriptive Cancer
y models for prescriptive
Large-scale persistent oncology
online learning based
100EF networks Precision predictive
oncology models for >
en mummoqal 100 different primary
ensemble multitask cancer types
networks
Single cancer (multi-tumor
Re-enforcement leamning and ensemble) models
10EF applied to hybrid modeling (mechanistically and
problems empirically informed)

Asynchronously trained

Ta rg et ~ 20-30 MW multi-task networks

1EF - Deep ensemble networks
combining generative
networks and classification

Multi-task networks

Muiti-mechanism ensembles for
individual cancers
hybrid-informed cancer drug
response model ensembles

Single Cell models from muiti-
mechanism models and
ensembles

trained with transfer Multi-mechanism biology single
100PF learning ensemble empirically informed
cancer drug response models
Convolutional and :
recurrent classification Single
networks mechanism
: bi
10PF Single SO
mechanism
biology and
single trial
16 Computing Project
“*foday 2020 2022

From Paul Messina, Argonne National Laboratory
Iy
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HOUSTON

i

WE HAVE PROBLEM..



The problem:

Expected case scenario

m Production

M Data centers use

M Wireless networks access
use

M Fixed access WiFi use

M Fixed access wired use

m Consumer devices use

2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025

From “Total Consumer Power Consumption Forecast”, Anders S.G. Andrae, October 2017

56



THE END OF MOORE’S LAW

Parameter Classic
(scale factor = a) Scaling Everything was easy:
« Wait for the next

Dimensions | /a technology node
* Increase
Voltage |/a frequency
 Decrease Vdd
Current |/a = Similar increase of
Capacitance |/a pZ?f‘llﬁfnr;tfge

= No need to

Power/Circuit | /a2 .
recompile (except
Power Density I if architectural
improvements)
Delay/Circuit |/a

Source: Krisztian Flautner “From niche to mainstream: can critical systems
make the transition?”
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THE END OF-MEOORE:S+AW DENNARD SCALING

Parameter Classic Current
(scale factor = a) Scaling Scaling

Dimensions |/a |/a
Voltage |/a I
Current |/a |/a
Capacitance |/a >1/a
Power/Circuit | /a2 |/a
Power Density I a
Delay/Circuit |/a ~|

Source: Krisztian Flautner “From niche to mainstream: can critical systems
make the transition?”
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Exponential increase of performances in 33 years

de——)

| Star Trek Enterprise
Production car of 1985 X 100 000 000 Year: about 229p0

Lamborghini Countach 5000QV  in 33 years

: o
Max speed 300 Km/h 27 times the speed of light”
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MOORE 'S LAW AND DENNARD SCALING

10 ssemsmcasdhuns ~-Moore’s law: _
' Transistor increase

Stagnétion...

.b
.

Transistors
(thousands)

Single-thread
Performance
(SpecINT)

Frequency
(MHz)

Typical Power
(Watts)

Number of
Cores

1975 1980 1985 1990 1995 2(;00 2005 2010 2015

Source from C Moore, « Data Processing in ExaScale-Class

Computer Systems », Salishan, April 2011

—, v
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Technology evolution

Silicon Quantum bits

FinFET
28nm 10nm 2018 5nm
2017
14nm T

Steep slope devices
Mechanical switches
Si Quantum bits

Disruptive scaling

Alternative to scaling and
diversification

Monolithic 3D for 3D VLSI




COST OF MOVING DATA -> COMPUTING IN MEMORY

The High Cost of Data Movement

20mm

4 -
>

Hm-bn DP H , DRAM
20pJ 256 pJ  16nd [__] Ry

256-bit Efficient
buses 900 PJ [ o chip link

256-bit access /

8 kB SRAM

Source: Bill Dally, « To ExaScale and Beyond »
www.nvidia.com/content/PDF/sc_2010/theater/Dally_SC10.pdf




SPIKE-BASED CODING

Pixel Spiking frequency
" brightness L,V
28
Qv I | )fMIN
- Rate-based 0
5 -
QAT input coding - | | | >
X A
o f
NS AnERiN ,t“"""
800 17 100
700 | -
» 600 | 80
g 500 [&5== 60
3 400 |
< 300 | 40
200 |
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NEUROMORPHIC ACCELERATOR:
Neu RAM;Q COMPUTE AND MEMORY TOGETHER IN
DYNAPS-SL (INI-ZURICH)

Neuram3 1st IBM True

chip North

Technology 28 nm FDSOI  28nm CMOS
Supply Voltage 1V 0.7V
Neuron Type Analog Digital
Neurons per core 256 256
Core Area 0.36 mm? 0.094 mm?2
Computation Parallel Time

processing  multiplexing
Fan In/Out 2k/8k 256/256
Synaptic Operation per Second 300 GSOPS/ 46 GSOPS/W
per Watt w1
Energy per synaptic event <2 pJ*2 10 pJ
Energy per spike <0.375 nJ*3 39n)

+ 1 At 100Hz mean firing rate, by appending 4 local-core destinations per spike, 400 k events will be broadcast to 4 cores with
25% connectivity per event. 400 k x 1 k x 25% / 300 1 W = 300 GSOPS/W

+ 2 In case of 25% match in each core, energy per synaptic event = energy per broadcast / (256*25%) =120pJ/64 = 2 pJ

x 3 Energy per spike = total power consumption / spikes numbers = 300 uW/800 k = 0.375 nJ

64
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Learning from neuroscience: STDP
(Spike Timing Dependent Plasticity)

Neuron
_ A - STDP = correlation
([}, Electrical %N::g/v ‘f% detector
signal ““““ 7 pre-synaptic post-synaptic . peocortexiayers
e =D o,-o:, Neuron Neuron LTP Hippocampus
1 ’ Synapse
Axon ynap LTD
Dendrite ;
- : :gocortex-layer 2/3
100 ippocampus
80‘ Causality
~~ N { . .
c o . @ pPotentiation (LTP) :
ﬁ‘AVk D 60 : o
> —_— N i ELL of electric fish
O 1
= O 407
tpost < tpre O e} ) '
= 8 207 :
/\ % 4= 0_ AQ S : QA'1§A~ergic neurons
in hippocampal culture
g S 8 .1 3
> O .20- . RN\ E
n £ Anti-Causality Ne: ;
“01Depression (LTD) % ,

&
S

; neocortex-layer 4 spiny
" stellates

.50 0 50

-80 -40 0 40

1 r
0
re

P tore = Lpost (MS)
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Investigating RRAM as synapses
Unsupervised learning (information coded by Spikes)

Thermal Electrochemical
effect effect
PCM I CBRAM
GST Electronic effect Ag / GeS,
GeTe oxygen vacancies

GST + HfO,

TEC

OXRAM

GST
o HOAN
lw- - j
+BEC _
M.Suri, et. al, IEDM 2011
M.Suri, et. al, IMW 2012 , JAP 2012
O.Bichler et al. IEEE TED 2012

M.Suri et al., EPCOS 2013

D.Garbin et al., IEEE Nano 2013 D.Garbin et al. IEDM 2014
D.Garbin et al., IEEE TED 2015

TIN/HfO,/Ti/TiN
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/ Learning rule \

1201 o Exp. data [Bi&Poo]
]—um
{—1mw
]—LTD

)
r @ D
o O O O

Conductance change AW (%,
N N
o

8

AN
88 o8¢
Eo
=3
A'U§

~N

Example: Leaky Integrate &
Fire (LIF) neuron

_ Ispike ~ !last_spike
u=u.e Tleak + w

Bio-inspired models exploration

/ Network topology
Lateral .f-g_;_;»_:;::::_.

inhibition 7 -

Lateral
inhibition /TS

CMOS Retina

< 16,384 spiking pixels

128

Neuromorphic
simulator

S
S

%)
S
T

Conductance (nS)
=)
=]

Conductance (nS)

0

\_ /

Complete tool flow for bio-inspired synapses, neurons and learning rules network simulations

[O. Bichler et al., NanoArch’2014]
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Fast and accurate Deep Neural Networks exploration

Layer-wise detailed memory
and computing requirements

Dataflow visualization

Results visualization:
‘ s 4 - Pixel-wise segmentation
Tt - ROI bounding box extraction

A AT

N2D2 INI network description file

; Database
[database]
Type=MNIST_IDX_Database
Validation=0.2

; Environment
[env]
SizeX=24
SizeY=24
BatchSize=128

[env.Transformation]
Type=PadCropTransformation
Width=[env]SizeX
Height=[env]SizeY

[env.OnTheFlyTransformation]
Type=DistortionTransformation
ApplyTo=LeamOnly
ElasticGaussianSize=21
ElasticSigma=6.0
ElasticScaling=36.0
Scaling=10.0

Rotation=10.0

; First layer (convolutionnal)
[conv1]

Input=env

Type=Conv

KernelWidth=5
KemnelHeight=5
NbChannels=6

Stride=2
ConfigSection=common.config

: Second layer (convolutionnal)
[conv2]

Input=conv1

Type=Conv

KernelWidth=5
KernelHeight=5

Channels=12

n=common.config

and classification

T
v —
»

(LT

/

]

[<¥¥

Third layer (fully connected)
Ifc1]

Input=conv2

Type=Fc

Output layer (fully
[fe2]

Input=fct

Type=Fc
NbOutputs=10
ConfigSection=com

NbOutputs=100
ConfigSection=common.config
®
Softmax layer 0
[soft]
Input=fc2 ®
Type=Softmax
NbOutputs=10
WithLoss=1

ConfigSection=common.config

Pixel-wise and object wise
confusion matrix reporting

Layer-wise weights and kernels
visualization, distribution and
data-range analysis

Layer-wise output visualization
and data-range analysis
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Example of use of N2D2 .

& N2h2

AppObjectRecognition/

Live object recognition
application
based on ILSVRC2012 (ImageNet)
dataset

AppFaceDetection/

Live face detection application,
with gender recognition
based on the IMDB-WIKI dataset

AppRoadDetection/

Simple road segmentation
application
based on the KITTI Road dataset

N2D2 is available at hitps://agithub.com/CEA-LIST/N2D2/

« Smallest dependencies and requirements among major frameworks:
GCC 4.4 or Visual Studio 12 (2013) / OpenCV 2.0.0
» Easily extendable with a “plug-and-play” modular system for user-made modules

Development of efficient solutions for Deep Learning Inference
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NVM synapses implementations

2-PCM synapses for unsupervised cars trajectories extraction

25

From spiking pre-synaptic

&~ 50ns - TOns
',;23',: . . .cpweaetad neurons (inputs)
20 - Behavioral Model Fit r..«ci";'.'..‘!_qi"'..
o=~ ook ﬁ"!- A —L+ - T
‘g 15 4 0" _-".. “&".*.“ |
; g’ ~"... e |
® ’ '.:_‘ei *
g0 ,‘::‘ Vyuss = 2V s
R .§ o ik T
BEC z b A-jr‘ W I y I=l+-l7p
Crystallization/ é " ¢ ﬁa Oo?ggga&ahﬁaaﬁ"‘°°“°" '\ =1 Spiking post-
. . " o o — .
Amorphization ek synaptic neuron
k- : Equivalent
0 B 10 15 20 25 30 (output)
Pulse Number 2-PCM synapse

[O. Bichler et al., Electron Devices, IEEE Transactions on, 2012]

CBRAM binary synapses for unsupervised MNIST handwritten digits

classification with stochastic learning
"‘"J
J?n

CBRAM 10

1:

Pe——

g
€ 01 ;
¢
3 oo W**Wv,: :\z"r s-q
- ]
2 0001
o
Forming/Dissolution of 0s ot
o-

0 102030405060708090100
RESET/SET pulse number

conductive filament [M. Suri et al., IEDM, 2012]
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Test vehicle for spiking neural networks in 130nm CMOS with OxRAM elements
between Metal 4 and Metal 5 of the back-end is done at CEA LETI.

Area is 1,8mm?Z. It contains 10 neurons and 1440 synapses, (11,5k OxRAMs)

It can run MNIST (Characters recognition)

000000007000 00O
(VYN V2202001 N7
2222232222122 222
3333333353333 333
e st qda94Yd ¢yddq8yy
555855S$S555s58555 5
b6 bblbobbodcéébtelb
T797777 1790122777
Y3 7888 P S RPTTYILC D
99999%9494944919 9

European project: NeuRAM3

NEUral computing aRchitectures in Advanced Monolithic 3D-VLSI nano-technologies

O
Neuron
SPIRIT test chip
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REDUCING COMMUNICATIONS:
3D INTEGRATION COUPLED WITH RRAM

HfO2

-

HfO2
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POTENTIAL SOLUTION FOR COGNITIVE CYBER PHYSICAL
SYSTEMS

Time

SW tools, benchmarks and Heterogeneity & everything close
design methodologies

SW tools, benchmarks
and design methodologies energy aware

= New Memories
m | Active silicon interposer,\ (NVM) close to
High density 3D the logic
Cu
High Density 3D ZaE]
i
ny

I.‘al

Photonic

New Memory
Technologies

Neuro chiplet Scaling with FDSOI,

Neuromorphic 7. FF and CoolCube™
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PARALLELISM AND SPECIALIZATION ARE NOT FOR FREE...

Frequency limit

-> parallelism Ease of

programming

Energy
efficiency =
heterogeneity




MANAGING COMPLEXITY....

“Nontrivial software written with threads,
semaphore, and mutexes is
incomprehensible by humans”

Edward A. Lee

The future of embedded software
ARTEMIS 2006

Parallelism, multi-cores, heterogeneity,
distributed computing, seems to be too
complex for humans !
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Managing complexity

Cognitive solutions for complex

computing systems:

« Using Al and optimization
techniques for computing
systems

e Creating new hardware
« Generating code
* Optimizing systems

« Similar to Generative design

for mechanical engineering

“And that's why we need a computer.”



USING Al FOR MAKING CPS SYSTEMS: “GENERATIVE DESIGN” APPROACH

The user only states desired goals and constraints
-> The complexity wall might prevent explaining the
solution

g

“Autodesk”

Motorcycle swingarm: the piece that hinges the rear wheel to the bike’s frame

7




2017: GOOGLE; USING DEEP LEARNING TO DESIGN DEEP LEARNING

13 H L] H Model | Depth  Parameters | Error rate (%)
Neural Architecture Search”, using a _ : : ‘ '
Network in Network (Lin et al., 2013) [ - - 8.81
-C? i al., 2014 : ; !
recurrent neural network to compose LG Sineerers ctal 2019 : _ 123
H H Highway Network (Srivastava et al., 2015) - - 7.72
neural network architectures using Scalable Bayesian Optimization (Snocketal | 2015) | - : 637
H 1 FractalNet (Larss l., 2016) 21 38.6M 522
reinforcement learning on CIFAR-10  [iine dason s | & oM 222
(character recogr"t'on) ResNet (He et al., 2016a) | 110 LM | 6.61
ResNet (reported by Huang et al. (2016¢)) | 110 1.TM | 641
ResNet with Stochastic Depth (Huang et al., 2016¢] | 110 1.7M 5.23
Sample architecture A | 1202 10.2M 491
with probability p Wide ResNet (Zagoruyko & Komodakis, 2016) | 16 11.0M 4.81
[ l 28 36.5M 4.17
ResNet (pre-activation) (He et al., 2016b] | 164 1.7M 546
Trains a child network s O e
DenseNet (L = 40,k = 12) Huang et al. (2016a) | 40 1.0M 5.24
The coreher (W) Freaileibsoine DenseNet(L = 100, k = 12) Huang et al. (2016a) 10 7.0M 4.10
DenseNet (L = 100. k = 24) Huang et al. (20162} 100 27.2M 3.74
I J INcural Architecture Search v1 no stride or pooling
eural Architecture Search v2 predicting strides
[Neural Architecture Search v3 max pooling
e Neural Architecture Search v3 max pooling + more filters

scale it by R to update
the controlier

Several other interesting “Auto-ML”
research projects

From arXiv:1611.01578v2, Barret Zoph, Quoc V. Le
Google Brain

78



Q-learning energy manager

On-line, gradually learn the SoC
operating points such that
performance constraints are
respected and energy
consumption is reduced

No need to model the dynamics of
the system

Q-learning based SoC energy

management

Dynamic software applications with
performance constraints, e.g.,
throughput

androi

d
Standard Linux-based operating eu?f;“x
system

Multi/many core SoCs

"

\

-
o

o
o

<
o

...................
.................

o
.-

normalised energy

< non-linear controller applied to DVFS
« Pl applied to DVFS

RL applied to DVFS
100 200 300 400 500 600 700
time (seconds) y

L=
N
P y

000

Up to 44% energy reduction, wrt. state-of-the-art
(proportional-integral and non-linear controllers)
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X EXAMPLE: DESIGN SPACE EXPLORATION FOR DESIGN
MULTI-CORE PROCESSORS! (2010)

Calculated Performance versus Area

Ne-XVP project — Follow-up of " et
the TriMedia VLIW ( —
) ‘
1,105,747,200 heterogeneous
multicores in the design space
2 millions years to evaluate all
design points
Al inspired techniques allowed

to reduce the induction time to
only few days

. Performance (1/second)

=> x16 performance increase

3

‘ Area (;nmz)

1 M. Duranton et all., “Rapid Technology-Aware Design Space Exploration for Embedded HeterogeneousMultiprocessors” in Processor and System-on-Chip
Simulation, Ed. R. Leupers, 2010
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PROGRAMMING 2.0: LET THE COMPUTER DO THE JOB:

Describing what the program should accomplish, rather than describing how to
accomplish it as a sequence of the programming language primitives.

For example, describe the concurrency of an application, not how to parallelize
the code for it.

(Good) compilers know better about architecture than humans, they are better at
optimizing code...

Declarative Programming

Imperative Declarative

81




Where it come from?

82



HIPEAC

High-Performance and Embedded
Architecture and Compilation

HIPEAC's mission is to steer and increase the
European research in the area of high-
performance and embedded computing systems,

and stimulate cooperation between
a) academia and industry and
b) computer architects and tool builders.



13 partners, 522 members, 99
associated members, 423
affiliated members and 855
affiliated PhD students from 363
institutions in 40 countries.

hipeac.net/members/stats/map



 Consultation meetings
* HIPEAC Vision 2019
* Disseminating the HIPEAC Vision

» Conference _
« ACACES summer school WP4 Roadmapping

« Computing systems weeks

« Stimulating collaboration
* HIPEAC Jobs
WP2 Connecting ‘
the communities
‘ WP3 Dissemination

« Communications
 Road show
 Awards

.W _ . * Website
P1 Growing the communities

® Management

* Project management
* Financial management
* Industrial Advisory board

* Membership management

» Growing the industrial community

» Growing the innovator community

» Growing the stakeholder community

» Growing the new member states membership

B



THE HIPEAC VISION

1 [PEAC
COMPILATION

The HIPEAC Vision Document is a deliverable of the coordination and support action
on High Performance and Embedded Architecture and Compilation

The last HIPEAC Vision Document was published in January 2017.

The next version is on-going (printed version for end 2018)

2009 2011

January 2017 version is available at:
http://hipeac.net/vision
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STRUCTURE HIPEAC VISION 2017

Market Technology

Position of

Society Europe

Recommen

dations




Increasing
ICT
workforce




FOR FURTHER READING

http://hipeac.net/vision

1 [PEAC |
COMPILATION b

HIPEAC Vision 2017

HIGH PERFORMANCE AND EMBEDDED ARCHITECTURE AND COMPILATION

Editorial board:

Marc Duranton, Koen De Bosschere,
Christian Gamrat, Jonas Maebe,
Harm Munk, Olivier Zendra



CONCLUSION: WE LIVE AN EXCITING TIME!

b i o Al P |

he best way to predict the future is to invent it.”
Alan Ka







Thank you for your attention
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Special thank you to Olivier Bichler, Denis Dutoit, _
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