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O Introduction

The “Brain Computer Interface”

General BCI Control System

A "Brain-Computer Interface" (BCl) Sigmial Feature S

is the control loop platform Acquisition Extraction
between the human brain and
mechanical devices.

$

Goal: To create enabling
technology, even for disabled

people, controlling devices by their
mind

Recognition

Commands
/ BCI Application \

Feedback
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O Introduction

The “Brain Computer Interface”

The BCl is based on the recognition of a particular Brain Activity Pattern (BAP), that is
excited during a particular mental task. Some of the most used (state of the art):

Cursors and Speller

] Event related potentials (ERP)

1 Slow cortical potentials (SCP)

[ Event-related synchronization
potentials (ERD/ERS)

(] Steady state visual potentials
(SSVP) Car Driving

[ Sensorimotor rhythms (SMR) > _—

Hochberg et al.(2006)

Duan Feng et al. (2015) K
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O Introduction

The “Brain Computer Interface”

The BCl is based on the recognition of a particular Brain Activity Pattern (BAP), that is
excited during a particular mental task. Some of the most used (state of the art):

Cursors and Speller
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] Event related potentials (ERP)
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O Introduction

The “Brain Computer Interface”

The BCl is based on the recognition of a particular Brain Activity Pattern (BAP), that is
excited during a particular mental task. Some of the most used (state of the art):

Prothesis
Cursors and Speller

] Event related potentials (ERP)

1 Slow cortical potentials (SCP)

J Event-related synchronization
potentials (ERD/ERS)

(] Steady state visual potentials
(SSVP) Car Driving

[ Sensorimotor rhythms (SMR) -~

Ortner et al. (2011)

Hochberg et al.(2006) Tanaka et al. (2015)
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The “Brain Computer Interface”

The BCl is based on the recognition of a particular Brain Activity Pattern (BAP), that is
excited during a particular mental task. Some of the most used (state of the art):

Prothesis
Cursors and Speller

Wheelchairs

] Event related potentials (ERP)

1 Slow cortical potentials (SCP)

J Event-related synchronization
potentials (ERD/ERS)

(] Steady state visual potentials

Ortner et al. (2011)

Hochberg et al.(2006) Tanaka et al. (2015)

(SSVP) Car Driving Neuro-games
[ Sensorimotor rhythms (SMR) Z T

Duan Feng et al. (2015) K «Neuro-Pong» (2010)
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The “Brain Computer Interface” 0 Rosults

O Conclusions

The BCl is based on the recognition of a particular Brain Activity Pattern (BAP), that is
excited during a particular mental task. Some of the most used (state of the art):

Prothesis
Cursors and Speller

Wheelchairs

] Event related potentials (ERP)
1 Slow cortical potentials (SCP)
J Event-related synchronization

i 0 I (20
potentials (ERD/ERS) rtner et al. (2011)
[ Steady state visual potentials Hochberg et al(2006) Robotics Control Tanaka et al, (2015)
Neuro-games

(SSVP) Car Driving
d Sensorimotor rhythms (SMR) — »

Bogue et al. (2014)

Duan Feng et al. (2015) K «Neuro-Pong» (2010)
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O Introduction

State of the Art

Physiological Phenomena Number of Training Mean?
. ! . Transfer rate
(Occurrence Time) choices Time Accuracy
(Opt: 24) (Opt: <1h) (Opt: 230 bits/min) (Opt: >80%)
Neural activity elicited by a visual ««  60-100 ‘ |
E : —/ . . / 9 |
SSVP (or VEP) stimulus (~¥10-70ms - AS) Hours & bits/min 80% ./
Slow Cortical Potentials are shifts |
. . . . . ‘e i / ‘12 ) 1
SCP in the cortical electrical activity 2-4 — Weeks ./ bitss/min ./ 86% ./
(200ms BS to 300 ms AS)
Positive peaks.due to the | . 20-25 - -
P300 occurrence of single or rare <9 . Hours — ) . . — 84% _ )
. 4 - bits/min  — =
stimulus (~150-450ms AS)
Modulations in sensorimotor T | 3-20 ‘o
MR 2- ) Week | , . & 9 )
> rhythms (up to 8s AS) > 4 eexs ./ bits/min 85% ./
!Mean accuracy evaluated on work that operates on single trial classification; AS: after stimulus; BS: before stimulus

.. Not in line with the BCl needs "' Could be improved .,'In line with the BCI needs
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O Introduction

Our Aim IS...

. . Number of Training Transfer Mean
Physiological Phenomena . :
choices Time rate Accuracy
Positive peaks due to single [ J 20-25
< 0,
L or rare stimulus = Hours ‘ bits/min 1 s 1
Create a P300-based BCI system for the remote control of mechatronic device, which ensures:
.
[ High accuracy in detection {

 Fast User-Centered Machine Learning Stage R
1 Computationally easy algorithms for portable Sany Stmtee MIA

hardware (Raspberry Pi, Microcontrollers, FPGAs,

etc (] ) THREE-STIMULUS P3a N
(1 No brain signals modulation request o e — e
B . . «cce e s“"lﬂ'“‘ ::_- R
J Quick and accurate intention recognition - S
S 8S 8S D s s L
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O Introduction
O Methods

The architecture

[ Results
1 Conclusions

@F-LINE MACHINE LEARNI@
Symmetry @ Ch;

N 1.
E 2. C i Ch. . . . / e
5 5 Tf’lgx;x:/{ia A - Dlmenswnallty\ SVM-based Decision
4. PeaktoMax @ Ch Reduction Boundaries Extraction
e | 5. Num changes @ Ch;
i ‘ K — 1 6. Cumsum @ Ch, [ 1
- = 4 R
(T | SRS (SN S e | Features W 6x6fts jqa B B
; | Extraction / . /
(n_ch*6 fts) J | T T
It-RID: | NCA Features NFtSpec o
A gorit m 1. n=6Upper Ampl. . ;
2.  n=6 Lower Ampl. selection for Ti EXtI’aCtIOI’! C.)f highly
3. n=6 Latency characterizing area
/" SVM Boundaries
Functional based Classification
Features / LI M0y om0
Extraction T, , _
N ft S i 2 Prsiesrea
(Nfts,ec) nec s = Seyege1

K Am==3n

<ON-LINE CLASSIFICATION >
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O Introduction

The Hardware & Environment S s

[ Results
d Conclusions

The adopted stimulation protocol is a custom
visual oddball paradigm:

1 visual stimulation.
Jrandom flash on a display (25%
occurrence).

A inter-stimuli (I1SI) time 500ms.

IWES 2018
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O Introduction
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The Hardware & Environment

[ Results
1 Conclusions

Stimulation
Terminal

BCl Simulink

EEG Headset i Control System

o

Sl Prototype Car
B System (PCS)
AL

EEG
Base Station

ATMega328 P-PU
Bluetooth Interface Ultrasonic Sensors PCS Core
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1 Methods

The Machine Learning Stage

The PRE-PROCESSING " | =
Filtering: s
[ Bandpass Filtering (8th order {7

Butterworth Filter: 0.5 — 30 Hz) £ °
1 4th order Notch Butterworth : 48 — 52 Hz :
1 4th order Low Pass Butterworth : 13 Hz o

% 200 40 600 80 S;rgg?es 200 1400 1600 1800 2000
Data slicing: L Trial
The EEG data are decomposed in data E- isnmuu.us E
blocks (observation) of 600ms. i 1 R
Cemcmcaae- e m—mm—m—————————————————ee- =' Time
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The Machine Learning Stage 2 Resits

7-RIDE: P300 CHARACTERIZATION 1°1STIM '“wvgv%*‘*—

d IAW—%T
The ML stage is entrusted to the tuned - Residue 2T
Iterative Decomposition (t-RIDE) approach [1]. It is b STIM IJW—VQ%—

based on the hypotesis of well-structured brain

response. Grand | d
Average A\I \/ﬂ

t-RIDE divides the signal into two (or three) components: | Q 3
15t STIM
(d Stimulus recognition 1
3 Stimulus Classification: P300 2" STIM Wvgﬁf V= '
J (Optional) Active Response | |
i-th STIM

[1] D. De Venuto, V. F. Annese and G. Mezzina, "Remote Neuro-Cognitive Impairment Sensing
Based on P300 Spatio-Temporal Monitoring," in IEEE Sensors Journal, vol. 16, no. 23, pp. 8348-
8356, Dec.1, 2016.doi: 10.1109/JSEN.2016.2606553 RIDE
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The Machine Learning Stage

THe P300 FEATURE EXTRACTION

Feature #1:
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The Dimensionality Reduction 2 Resils

With 6 features per channels, a general classifier extracts the decision boundaries on the 2-by-2 combinations. In
this case it will work on 630 2D subspaces. To address the issue, in case of real-time prediction, the NCA algorithm
for features selection has been implemented in the ML chain.

The Neighborhood Component Analysis approach defines the average probability of correct classification as:
No Nf
Fw =) pi—d) W
i=1 r=1
p, : probability of correct classification of the observation.
w,: desired feature weights. A: regularization parameter.
The system automatically maximize F(w), choosing opportunely A.

25 f1 @ 1 f1 @

o

°
= 2 ﬁ i
% [@ - o 2 cC
* §2 5 =
e RS 2 3
g > c
o o QLJ Q
“—o.s&\ = @ 4
0\61%0‘ O ©

0 10 20 3@

Feature index
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1 Methods

The Machine Learning Stage

THE CLASSIFICATION BOUNDARIES
The features are used to train an “One vs All” Support Vector Machine (SVM).

Subspace [f1, f2, 3] Subspace [f2, f3, 4] . . . .
= = '\ Separating criterion: Radial
basis (Gaussian).

It isolates the i-th target from
the others, defining, on each
subspace

. Ny
SPZPT21 (Npgs — 2)!

area in which only the desired
target can be present.
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1 Methods

The Real Time Classification

Functional Feature Extraction 1t Decision Rule  Score Assignment
B - Rule #1. If Pi,j,T is in the areas delimitated by
:::— = S50 =0 the SVM-based boundaries (SVMb; ), F — 1
= Nsub—sp,T
fing | o . F(P;j7<SVMb, ;
B SCOREy = 2=t T Cur<Sum)
On-li - sub—sp,T
Obs‘je:> ] ’
= Sgmy =1 . . . .
il The target with the highest relative score is
fy o labelled as the choice.

Fft € R"idel + Mayr2 - rep

Rule #2. The score of the ambiguous targets is then re-assigned in a weighted version as:

Ngub—s T
Z P

i=1 WT(i)*F(Pi,j,T<SVMi,j,T)

SCORE;"” =

Nsub—sp,T
with W (i) the vector that contains the features weights.
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O Introduction
O Methods

The PCS: Mechatronic Actuator

[ Results
d Conclusions

J Central Unit: Arduino UNO Rev 3
(ATMega 328 P-PU Microcontroller);

J 2 DC motors control the propulsion of
the vehicle

J 1 Servomotor controls the steering;

. 3 ultrasonic sensors for automated
navigation System;

J Other components: 1 DC-DC

converter; 1 HC-05 Bluetooth Module,

1 h-bridge; 18650 batteries (3.7V and

2700mAh)
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The Experimental Results

Dimensionality reduction allows passing from, { o 25
i.e.’ FE R300, 369':" € R300, 7’ by m|n|m|Z|ng the m0.16® '._._'4.‘.‘.......“- % 2 .
CIL loss. For example, the 7 selected features 2 .+ ! 210 )
allow the classifier extracting decision %0.12 ';“ go; .
boundaries on 21 subspaces w.r.t. 630 ones. -~ : '0 ——— e
/ O i i s "' T R R \ "0 0.01 Ol;g;_r,nbggs 0.04 0.05 0 1?=eature2?ndex 30
g : :: (a) Classifier in loop loss vs A (b) selected features
@° 2i4ie o faru e e m a2 m 2 The P300 is easily recognizable on CP1 by its
® i symmetry and number of change (Ic?w), c?n Pz by
2. Slope Changes the Latency-Max distance and an high triangle
@ P area distinguishes the P300 on CP2.
2. Slope Changes
(®) ® P8 encle Ares (a) Occurrence of the extracted features (b) Physical significance of the

\ j main features
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The Experimental Results

[ Results

90

90

e

o]
o
T

@ ’ ’ 1"IE]::llr‘c_;lzaﬂ:éhnsa.e:\:rlaticonjsﬁft:u' M1f ” 22 “

1 The system accuracy is, on average ( 7 subjects), 84.28 + 0.87 % (Figure a).

1 The accuracy increasing reaches the steady-state accuracies only after 13 targets and 52 not
targets (ML timing ~ 33 s).

1 An Independent Component Analysis approach has been used to train the same system,

(Figure b). ICA-trained system needs higher number of trials (26 targets and 104 not targets)
to reach an accuracy slightly higher than a t-RIDE-trained BCI but later (ML timing >60s).

—#—{-RIDE based ML
—#8—|CA based ML

Classification Accuracy (%)

6 8 10 12 14 16 18 20 22 24 26 28
Target Observations for ML
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[ Results

The Experimental Results

Features Extraction
T T T

Sub1 0 0.3664 | 0.4494 | 0.3535
g & Sub2 0.6346 | 0.1451 Bl 0.1404
'_§* Sub3 0.5285 | 0.4048 | 0.8418
2 4 1 12 14 1 1 2 N
i T e o - Sub4 0.0788 | 0.7718
Score Assignment =
2 subs 06267 | 0.8005 | 0.2416 | 0.3117
3 g Sub6 0.9088 | 0.4991 0.2527
’ Sub7 0.2285 5
| | . J . . x e T T2 T3 T4 b T T2 T3 T4
0 10 20 30 40 50 60 70 80
c i DTi{ne g%)P P for Actuati . . *1, (a) Heatmap of Subject mean accuracies vs directions (b) Heatmap of
—Communication Belay (TCPF) for Actuation Tlmlng . Subject accuracies standard deviations vs directions
5 i
4 | U Buffer: 500ms
2 || 1 1 Complete FE stage : 19.58+9.7ms
, I W Decision: 0.067+0.008ms "1 The system has been implemented on a
. : : . : : : . . PC with Intel i5 processor and 16 GB RAM
o+ = s« s o =« [1Communication BCS-PCS: 3.5 ns
Time (ns)
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O Introduction

Video Demonstration S

O Conclusions
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Intention — Action
Sequence
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Electrodes
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Conclusions

O Conclusions

The BCI is promising method in assistive technology, diagnostic and
rehabilitative application field but can be used also to assist the
autonomous driving.

A P300-based BCI has been developed, realized and tested on a

prototype car based on Arduino UNO.

 The ML stage uses an innovative architecture, which guarantees a
good operation speed and a reduction of requested amount of
data

e The implementation of a subjectivity-based feature selection,
allows fast user’s intention recognition

* The Support Vector Machine-inspired classifier shows

classification accuracy of 84.28 + 1.24 % (tested on 7 subjects)
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