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Section 1

@ Introduction

d Point S



Motivation

Precision Tuning

Classic technique in Embedded Systems:

e Trade-off computation accuracy for performance/energy

Usually exploited among available floating point representations
32 bit | 64 bit | 128 bit
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Motivation

Classic technique in Embedded Systems:

e Trade-off computation accuracy for performance/energy

Usually exploited among available floating point representations
32 bit | 64 bit | 128 bit

What if we want to use less bits?

@ specialized hardware

@ use integer data types
o FIXED POINT representations
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Fixed Point Representations

Usually exploited when floating point unit is not available.

Programmable hardware can implement fixed point computation using
custom width. We consider the general case of x86-like architecture.

e Keep fixed representation width (8, 16, 32, 64 bits)
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Coding in Fixed Point

The Embedded C language allows programmers to use native fixed
point data types. What about other programming languages?
Let’s take the example of ANSI C, C++ where the only way to
represent reals is via floating point?

o Use native integer data types

HOW?
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Section 2

© Manual Conversion

d Point S



Manual Conversion

o Time consuming
o Error prone

o Unfeasible on large code base
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Manual Conve

o Time consuming

o Error prone

o Unfeasible on large code base

Several approaches have been proposed.
Let’s discuss their benefits and drawbacks by examples.
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© Abstract Data Type
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Template-based C++ class

Define a data type to automatize the most common operations
e ADT provide automatic scaling at every mul/div operation
e ADT provide conversion between representations
e ADT provide implicit static cast

e Programmer does the rest
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ADT: Pro & Con

PRO

o Easy to use: just include an header file
o Portable

\

CON
e Force code standard change to C++

e Data format controlled by the programmer
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Section 4

@ Source-to-Source Compilers
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S2S Approach

Change the source code to replace the floating point instruction with
fixed point equivalents

e Programmer writes pragmas (or custom language)

e Tool performs pattern matching & rewrites code

@ Requires custom environment
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Example: ID.Fix & GeCoS

e Programmer annotates

ID.Fix! propagates annotations

o GeCoS? source-to-source replaces floating point with fixed point

e Conversion utils are inserted before/after the given region

http://idfix.gforge.inria.fr
*nttp://gecos.gforge.inria.fr

Cherubin, Fixed Point Support WES 2018, Siena


http://idfix.gforge.inria.fr
http://gecos.gforge.inria.fr

Annotations

e Programmer remarks variables that needs to be converted
e ID.Fix analysis returns dynamic range for annotated variable(s)
#pragma VARIABLE_TRACKING variable

for (int i = 0, i < 10, i++)

{

variable i;
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Annotations

e Programmer remarks variables that needs to be converted
e ID.Fix analysis returns dynamic range for annotated variable(s)
#pragma VARIABLE_TRACKING variable

for (int i = 0, i < 10, i++)

{

variable i;

Output:
variable_min
variable_max = 9

]
o
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ID.Fix plugin

e Dynamic value range is propagated to all intermediate values

e For each variable we compute the minimun number of integer bits
we need to represent it

@ We leave the rest of the data size for the fractional part
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ID.Fix plugin

e Dynamic value range is propagated to all intermediate values

e For each variable we compute the minimun number of integer bits
we need to represent it

@ We leave the rest of the data size for the fractional part

Example:

INTvariable Z 4

variable € [0;9] = {
FRACvariable =32 - INTvariable

e Sttt +

|S|INT | FRACTIONAL |

e e Tt +
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The S2S compiler GeCoS takes the output of ID.Fix and converts the
floating point code to fixed point code
Uses a C++ template-based fixed point library

double m[SIZE1] [SIZE2];
FixedPoint<3,29> m_fixp[SIZE1] [SIZE2];
convert2DtoFixP<double, SIZE1l, SIZE2>(m, m_fixp);

Cherubin, / a Fixed Point Support IWES 2018, Siena



GeCoS Infrastructure

ID.Fix is a plugin of the GeCoS source-to-source compiler

@ GeCoS is a plugin of the Eclipse IDE
e Requires to work with GUI
e Requires JVM

@ Requires an equation solver

Then, the code can be compiled using the system compiler.
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S2S: Pro & Con

Dynamically select the data types

Fully automated

Source-language dependent

Data format decision based on selected input test set

Huge dependencies requirements

Difficult to maintain
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Section 5

@ Compiler Transformation
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Compiler Transformation Approach

Perform analysis and code conversion within the compiler
o Provides the same features of the S2S compiler

e Static code analysis instead of dynamic profiling
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Compiler-based Tuning Assistant

e Programmer specifies ranges of input values

Compiler propagates ranges to intermediate values

Compiler statically analyze the code
e Compiler automatically selects the best data type
o Compiler performs code conversion

o Compiler provides optimized code
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Annotation Example

Variables and computations which are conver- It is possible to specify the
ted to fixed point. size of the integer and
Connections between them highlight the ope- fractional part of the repre-
rations affected by the conversion. sentation.

float la __ _attribute ((annotate ("
int b = 9
a=>b * 2
a += 10.0
float/ec | attribute((annotate ("
c = functionl(b) + 3.5;

a+=c¢c * 2.0;

0

~.

The no_float and force_no_float annotations indicate which variables
have to be converted to fixed point. The conversion propagates to related compu-
tations in different ways: force_no_float entails the conversion of the depen-
dencies, while no_float propagates only to intermediate values.
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Example: Our Tool Infrastructure

Based on the LLVM compiler toolchain
o Annotations are natively supported by clang
e Applies to a large variety of programming languages
o Packaged as self-contained clang plug-in
@ clang can be used instead of the system compiler
e or can be easily integrated with the target toolchain
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Component Schema

Value Range (]?(1)(1)1 reduced precision
Analysis 0100 LLVM bitcode
0111
Y by

Data Type Check
Allocation N improvement

Annotation Code Feedback
propagation Conversion Estimation
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Benefits

Relies only on the well-known LLVM compiler framework

Does not require any customization of the compiler

Source language agnostic

Easy to maintain
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Success Story

We applied our tool to the Miosix embedded operating system

7777777777777 » w @ Convert the Control-Theoretical scheduler
{Nmi;‘ma} { psad } [sj’ﬁ;;y} from floating point to fixed point.

@ Speedup achieved on real-time benchmarks
(scheduling time)

o Work presented in Euromicro DSD 2018
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© Conclusions
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Conclusions

o We presented different approaches to perform reduced precision
computation with different automation levels
o Exploit the domain knowledge of the programmer to perform
selective conversion in a given source code
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Conclusions

e We presented different approaches to perform reduced precision
computation with different automation levels

o Exploit the domain knowledge of the programmer to perform
selective conversion in a given source code

e We showed how to exploit fixed point for reduced precision
computation in x86-like architectures
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Questions?
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Thanks for your attention!
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