IWES 2018

Towards Efficient and Effective Fixed Point Support

Stefano Cherubin, Giovanni Agosta
<name> .<surname>@{polimi.it}

Politecnico di Milano

14 September 2018

=6
(&) POLITECNICO
CGLALE MILANO 1863
INFORMAZIONE E BIGINCRCNERIA LAB

Cherubin, Fixed Point Support IWES 2018

Section 1

@ Introduction

d Point S

Motivation

Precision Tuning

Classic technique in Embedded Systems:

e Trade-off computation accuracy for performance/energy

Usually exploited among available floating point representations
32 bit | 64 bit | 128 bit

Cherubin, Agosta Fixed Point Support IWES 2018, Siena

Motivation

Classic technique in Embedded Systems:

e Trade-off computation accuracy for performance/energy

Usually exploited among available floating point representations
32 bit | 64 bit | 128 bit

What if we want to use less bits?

@ specialized hardware

@ use integer data types
o FIXED POINT representations

Cherubin, / a Fixed Point Support IWES 2018, Siena

Fixed Point Representations

Usually exploited when floating point unit is not available.

Programmable hardware can implement fixed point computation using
custom width. We consider the general case of x86-like architecture.

e Keep fixed representation width (8, 16, 32, 64 bits)

Cherubin, /

Fixed Point Support IWES 2018, Siena

Coding in Fixed Point

The Embedded C language allows programmers to use native fixed
point data types. What about other programming languages?
Let’s take the example of ANSI C, C++ where the only way to
represent reals is via floating point?

o Use native integer data types

HOW?

Cherubin, / a Fixed Point Support IWES 2018, Siena

Section 2

© Manual Conversion

d Point S

Manual Conversion

o Time consuming
o Error prone

o Unfeasible on large code base

Fixed Point Sup

Manual Conve

o Time consuming

o Error prone

o Unfeasible on large code base

Several approaches have been proposed.
Let’s discuss their benefits and drawbacks by examples.

Cherubin, A Fixed Point Support IWES 2018,

Section 3

© Abstract Data Type

d Point Support

Template-based C++ class

Define a data type to automatize the most common operations
e ADT provide automatic scaling at every mul/div operation
e ADT provide conversion between representations
e ADT provide implicit static cast

e Programmer does the rest

Cherubin, Fixed Point Support IWES 2018

ADT: Pro & Con

PRO

o Easy to use: just include an header file
o Portable

\

CON
e Force code standard change to C++

e Data format controlled by the programmer

Cherubin, / a Fixed Point Support IWES 2018, Siena

Section 4

@ Source-to-Source Compilers

d Point S

S2S Approach

Change the source code to replace the floating point instruction with
fixed point equivalents

e Programmer writes pragmas (or custom language)

e Tool performs pattern matching & rewrites code

@ Requires custom environment

Cherubin, Fixed Point Support IWES 2018, Siena

Example: ID.Fix & GeCoS

e Programmer annotates

ID.Fix! propagates annotations

o GeCoS? source-to-source replaces floating point with fixed point

e Conversion utils are inserted before/after the given region

http://idfix.gforge.inria.fr
*nttp://gecos.gforge.inria.fr

Cherubin, Fixed Point Support WES 2018, Siena

http://idfix.gforge.inria.fr
http://gecos.gforge.inria.fr

Annotations

e Programmer remarks variables that needs to be converted
e ID.Fix analysis returns dynamic range for annotated variable(s)
#pragma VARIABLE_TRACKING variable

for (int i = 0, i < 10, i++)

{

variable i;

Cherubin, Agosta Fixed Point Support IWES 2018, Siena

Annotations

e Programmer remarks variables that needs to be converted
e ID.Fix analysis returns dynamic range for annotated variable(s)
#pragma VARIABLE_TRACKING variable

for (int i = 0, i < 10, i++)

{

variable i;

Output:
variable_min
variable_max = 9

]
o

Cherubin, Agosta Fixed Point Support IWES 2018, Siena

ID.Fix plugin

e Dynamic value range is propagated to all intermediate values

e For each variable we compute the minimun number of integer bits
we need to represent it

@ We leave the rest of the data size for the fractional part

Cherubin, A Fixed Point Support IWES 2018, Siena

ID.Fix plugin

e Dynamic value range is propagated to all intermediate values

e For each variable we compute the minimun number of integer bits
we need to represent it

@ We leave the rest of the data size for the fractional part

Example:

INTvariable Z 4

variable € [0;9] = {
FRACvariable =32 - INTvariable

e Sttt +

|S|INT | FRACTIONAL |

e e Tt +

Cherubin, Agosta Fixed Point Support IWES 2018, Siena

The S2S compiler GeCoS takes the output of ID.Fix and converts the
floating point code to fixed point code
Uses a C++ template-based fixed point library

double m[SIZE1] [SIZE2];
FixedPoint<3,29> m_fixp[SIZE1] [SIZE2];
convert2DtoFixP<double, SIZE1l, SIZE2>(m, m_fixp);

Cherubin, / a Fixed Point Support IWES 2018, Siena

GeCoS Infrastructure

ID.Fix is a plugin of the GeCoS source-to-source compiler

@ GeCoS is a plugin of the Eclipse IDE
e Requires to work with GUI
e Requires JVM

@ Requires an equation solver

Then, the code can be compiled using the system compiler.

Cherubin, Fixed Point Support IWES 2018, Siena

S2S: Pro & Con

Dynamically select the data types

Fully automated

Source-language dependent

Data format decision based on selected input test set

Huge dependencies requirements

Difficult to maintain

Cherubin, / a Fixed Point Support IWES 2018, Siena

Section 5

@ Compiler Transformation

d Point S

Compiler Transformation Approach

Perform analysis and code conversion within the compiler
o Provides the same features of the S2S compiler

e Static code analysis instead of dynamic profiling

Cherubin, Fixed Point Support IWES 2018, Siena

Compiler-based Tuning Assistant

e Programmer specifies ranges of input values

Compiler propagates ranges to intermediate values

Compiler statically analyze the code
e Compiler automatically selects the best data type
o Compiler performs code conversion

o Compiler provides optimized code

Cherubin, Fixed Point Support IWES 2018, Siena

Annotation Example

Variables and computations which are conver- It is possible to specify the
ted to fixed point. size of the integer and
Connections between them highlight the ope- fractional part of the repre-
rations affected by the conversion. sentation.

float la __ _attribute ((annotate ("
int b = 9
a=>b * 2
a += 10.0
float/ec | attribute((annotate ("
c = functionl(b) + 3.5;

a+=c¢c * 2.0;

0

~.

The no_float and force_no_float annotations indicate which variables
have to be converted to fixed point. The conversion propagates to related compu-
tations in different ways: force_no_float entails the conversion of the depen-
dencies, while no_float propagates only to intermediate values.

Fixed Point Support 2018, Siena

Example: Our Tool Infrastructure

Based on the LLVM compiler toolchain
o Annotations are natively supported by clang
e Applies to a large variety of programming languages
o Packaged as self-contained clang plug-in
@ clang can be used instead of the system compiler
e or can be easily integrated with the target toolchain

Cherubin, Fixed Point Support IWES 2018, Siena

Component Schema

Value Range (]?(1)(1)1 reduced precision
Analysis 0100 LLVM bitcode
0111
Y by

Data Type Check
Allocation N improvement

Annotation Code Feedback
propagation Conversion Estimation

Cherubin, / a Fixed Point Support IWES 201§

Benefits

Relies only on the well-known LLVM compiler framework

Does not require any customization of the compiler

Source language agnostic

Easy to maintain

Fixed Point Sup V 2018, Siena

Success Story

We applied our tool to the Miosix embedded operating system

7777777777777 » w @ Convert the Control-Theoretical scheduler
{Nmi;‘ma} { psad } [sj’ﬁ;;y} from floating point to fixed point.

@ Speedup achieved on real-time benchmarks
(scheduling time)

o Work presented in Euromicro DSD 2018

J3Inpayds 403

g
g
3
:

JaInpaYs Auog

0/l 3j0sU0)
wasAsally

229 ‘X@INN uorezIUOIPUAS

Base Kernel

3 B
1 69 (=T
30 B 207 304 B3 r207
4 s " B (pc2138 . pc2138
Board Support Package
PP 9 28 25
a
S20 S20
g g
H
Hardware 2is g
0 10]
0s 05
00 00
" Jang " G o " ang ang g o Jang
cloronce W manal o mana i e roforonco B mana o maa

© Conclusions

Point S

Conclusions

o We presented different approaches to perform reduced precision
computation with different automation levels
o Exploit the domain knowledge of the programmer to perform
selective conversion in a given source code

Fixed Point Sup V 2018, Siena

Conclusions

e We presented different approaches to perform reduced precision
computation with different automation levels

o Exploit the domain knowledge of the programmer to perform
selective conversion in a given source code

e We showed how to exploit fixed point for reduced precision
computation in x86-like architectures

Cherubin, A Fixed Point Support IWES 2018, Siena

Questions?

d Point S

Thanks for your attention!

Cherubin, a Fixed Point Support IWES 2018, Siena 30

	Introduction
	Manual Conversion
	Abstract Data Type
	Source-to-Source Compilers
	Compiler Transformation
	Conclusions

