Achieving Predictable
Multicore Execution of
Automotive Applications
Using the LET Paradigm

Alessandro Biondi and Marco Di Natale

Scuola Superiore Sant’/Anna, Pisa, Italy

;) Dant Anna ?e £is

___C‘,J
e [l
J‘Tal. Scuola Uni Real-Time Systems Laboratory

Introduction

« The Iintroduction of safety-critical functions in automotive
systems, together with the advent of mulficore platforms, brings the

need fo rethink the development and execution paradigms for
embedded functionality

« Several issues in switching to multicores...

« Lack of appropriate modeling for partitioning applications
« Legacy SW with causality implicitly verified on single core
« Need for a portable timing model

» Achieving timing predictability is not trivial

* ...plus increasingly stringent legal regulations and
certifiability requirements 7

A. Biondi — IWES 2018

Logical Execution Time

« Logical Execution Time (LET) introduced as a method to
eliminate output jitter and provide time defterminism in the
Implementation of control algorithms [Henzinger et al. 2003]

« LET can be redlized with different scheduling sfrategies
provided that the desired semantic is respected

Classical
design

N e time

prone to large input/output jitter

¢ .¢ ®
LET Lmh Tﬂ i

v

®
e input 4 output/action

A. Biondi — IWES 2018 3

Logical Execution Time

« Recent renewed attention on LET by automotive industry

» Several players are adopting LET to provide deterministic end-to-
end latencies of chains of communicating tasks

LET seems a promising solution to also solve other issues in the
design and development of real-time systems (e.g., SW
portability, interface with control engineers, etc.)

5ms
Task

10ms
Task

v

v

20ms
Task

time

Example from Dirk Ziegenbein’s talk
at Dagstuhl seminar on LET

A. Biondi — IWES 2018 4

A. Biondi — IWES 2018

Scheduling strategy for realizing LET communication
in mullicore platforms to achieve execution
predictability

Implementation on Aurix Tricore TC275 and

evaluation with a pseudo-readlistic case study
(WATERS Challenge 2017 by Bosch)

LET AS AN
OPPORTUNITY TO
CONTROL MEMORY

CONTENTION

Memory Contention

« Contention in accessing shared memories strongly harms the
predictability of soffware running upon multicores

 Any-fime access to shared memories carries considerable
pessimism in fiming/schedulability analysis

Testbed: Aurix Tricore TC27x

Shared buffer of 20Kb in global
memory

Core 0 is wunder analysis and
accesses a portion of the buffer

Cores 1 and 2 are continuously
writing intfo the buffer to generate
interference

Access time (musec)

1400

1200

1000

800

600

400

200

+26%

H

8 12 16 20

Size of accessed memory (Kb)

e GO|0) cOre =3 core

A. Biondi — IWES 2018 7

Controlling Memory Contention

- Selling point. scheduling LET communication at the
beginning of periodic instances allows localizing the access
to shared memories in precise time windows

« Such fime windows are determined by the tasks’ periods
* they are hence predicfable (off-line)
« and can host explicit arbitration fo avoid contention

T~ T~
4 Al 4 Al
4 A Vs \
/7 \ /7 \
i \ / \
! \ 1 \
1 \ 1 \
\ I \
1 L 1
1 \ 1 \
1 1 1 1
1 1 1 1

time

1 1
1 ! | 1
1 ! \ 1
\ 1 \ 1
\ ! \ 1
\ ! \ 1
\ U \ 1
\ L 3 L [
\ 7 \ 7 v
\ ,’ N //
N . N 2

time

A. Biondi — IWES 2018 8

Realizing LET Communication

« Local copies of data allocated in the scratchpads
« Shared copies allocated in the global memory

and viceversa

* LET communication stack moves data from global to local memories

v

(ETcomm [EETHR

Task momm mmm

Preemptable task execution
with contention-free accesses
to local memory

A. Biondi — IWES 2018

LET Tasks: Synchronization

 One task running at the highest priority in each core to
implement LET communication

« Access to shared memory is regulated by lightweight
spin-based synchronization

oha ha b s

CPU #1

woulaa |ea .

I Write (output) I Read (input) = Busy waiting

time

time

time

A. Biondi — IWES 2018

LET and AUTOSAR RTE

« The tasks implementing the LET communication can be
automatically generated as part of the AUTOSAR RTE

« Qur approach is prone for being implemented in a model-
based design flow

* Integration within AUTOSAR

« RTE takes care of mirroring local copies according to the LET
paradigm

« RTE offers an APl to access the local copies

» Local copies are accessed with explicit communication

LET from global to local from local to global
task — \Ak
RTE >
Application Contention-free accesses to local memory
EYE I
T , @ @ ® t !
‘ P [[.
]

A. Biondi — IWES 2018 11

IMPLEMENTATION

Implementation

 Reference platform: Infineon Aurix TC275
« Asymmetric Tricore with scratchpads
« Widely adopted by the automotive indusiry

« Can be configured to match the abstract model
infroduced before

« RTOS: Implementation based on ERIKA Enterprise v2
« OSEK certified
« De-facto representative of the typical behavior of AUTOSAR OSes

« Open-source

A. Biondi — IWES 2018 13

Aurix TC27x

System Peripheral Bus (SPB)

Checker Core
FPU FPU
i TC1.6P i TC1.6P
iexaroachy CPUI exaroacy CPU2
Lockstep
| Ws I LIk

SRI Cross Bar Interconnect

(XBar_.

Global memory

J L Checker Core
| WS | FPU | 'S |
PMI DMI
24 KB PSPR TC1.6E 112KB DSPR
8 KB PCACHE CPUO 0.128KB
Lockstep DCache

]

A. Biondi — IWES 2018

Ay

I

L™ |
Bridge
(SFI1)
5]

Jl XBAR
PCACHE: Program Cache
Local (scratchpad) DCACHE: Data Cache
. DSPR: Data Scratch-Pad RAM
data memories i
PFlash: Program Flash
DFlash: Data Flash (EEEPROM)
PMUOU | [E] : SRiSlaventerface
[M] : SR MasterInterface
SRI Cross Bar Interconnect (XBar_SRI)
- 5V Ext. Supply
H (Optional 1.3V, 3.3V)
1) !"p
HSSL
DMA OCDS
HSCT 64 channels [< ™ Int::fau::.#nﬁ
[Ws]

I

]

System Peripheral Bus (SPB) | |

source: TC27x datasheet
14

Implementation (1)

The implementation required facing with three major issves:

1. Synchronization of task activations across cores
« Solved using remote procedure call (RPC) features available in ERIKA
» Single tfimer connected to an OSEK counter handled in CPU #0

« CPU #0 uses RPC to activate the tasks in all the cores by means of
OSEK alarms (inter-core interrupts are leveraged)

OSEK
counter

A. Biondi — IWES 2018

Implementation (2)

The implementation required facing with three major issues:

2. Inter-core synchronization to access global memory
« Similar strategy as for Mellor-Crummey & Scott locks
« Spin variables allocated to local scratchpads

« Each core can directly access all local scratchpads, hence making
notificafion of a spinning core easy (bafon passing)

« Need to pay attention to achieve sequential consistency (barriers
with DSYNC)

: procedure LET_TASK_P_X()
: do_write_tick()

busy_wait(spin_P_x_write == 0)
spin_P_x_write = 0

do_write()
notify_next_processor_write()

do_read_tick()

busy_wait(spin_P_x_read == 0)
spin_P_x_read = 0

do_read()

12; notify_next_processor_read()

13: end procedure

1
2
3
4
e
6:
7:
8.
9
10
11

16

A. Biondi — IWES 2018

Case Study

* Implementation tested with a case study

 Mock application generated from the model provided by
Bosch for the WATERS 2017 challenge - representative of an
engine control application
» ~20 tasks partitioned into the three cores of the TC275
« ~5000 labels (atomic variables) used by the tasks to communicate

« Experimental setup
* Infineon TriBoard v2 with TC275 @ 200MHz
» ERIKA Enterprise v2.7
* HIGHTECH Aurix C compiler v4.6
» Lauterbach PowerTrace-Il & PowerDebug

A. Biondi — IWES 2018 17

Code Generation

WATERS 2017 Challenge
provided by Bosch

Amalthea model
(XML)

_ﬂ'/-

Parser & Model transformation

Code Generator

LET
Mock Application BTOS : RTE to access communication
(.c/.h) configuration labels stack

A. Biondi — IWES 2018

Experimental Results

« The adopftion of the LET paradigm significantly increase time
determinism — it's an additional system featurel

« From a scheduling (timing) perspective, our realization faces with
two conflicting trends
f Worst-case delays due to memory contention are

reduced. Pessimism is removed by desion and
schedulability analysis is simplified.

High priority workload is required to perform LET
communications, which may harm latency-sensitive
tasks (priority inversion).

A. Biondi — IWES 2018

19

Experimental Results

e What's the impact of the proposed approach in terms of
run-tfime overhead and memory footprinte

e Despite the benefits in controling memory contention, is the
priority inversion infroduced by LET communication harmful?

Exec time first frame of LET tasks

(most expensive) % os
core | net execution time [us] 2 os
1 3.8 Eos
2 108.76 &
3 148.2 £ o2
S _ :) I
; ISR9 Task1ls Task ISR4 Task ISR3 ISR8 Task ISRl ISR7 Task Task
10ms 20ms 100ms 50ms 5ms
W LET = Explicit
Footprint (in bytes)
text data bss +7.5% (can be lower for a real appplicati
. ppplication)
LET, : 393064 | 4904 | 88328 Mostly due local copies of labels and code of LET
Explicit | 359872 | 4784 | 80752 communication

A. Biondi — IWES 2018

20

Conclusions

* Presented a scheme for pracfical implementation and
analysis of LET communication for multicore systems

« LET taken as an opportunity to control memory contention

* Implemented upon ERIKAvV2 on Infineon Tricore TC275 and tested
with a case study based on an application model by Bosch

 Take-away messages
« Impact on run-time overhead has been found negligible
 The only concern may be the increase of footprint
* There are a lot of open problems and possible improvements

* Future works
« Ad-hoc schedulability analysis under the proposed scheme

» Holistic synthesis methodology that optimizes label
placement, the generation of the LET communication stack,
of buffers, and possibly the runnable placement

A. Biondi — IWES 2018

21

Thank youl

Alessandro Biondi
alessandro.biondi@sssup.it

Achieving Predictable Multicore Execution of
Automotive Applications Using the LET Paradigm
A\L-\\.mdm Biondi and A o Di N

s Superore Son Anna, Pisa, Ty
sl s esandro o, it e} @2

restore predietability by controlling the fime when memory
For modern e sy, e AUTOSAR sadac]

el for
Fiuding = model of the Toncions snd the ks s seandand
AP for communication and execution, and a standard placform
architecture. In AUTOSAR. the application consisis of 3 s
of communicating runnables grouped into tasks and suaically
allocted ad scheduled on the sysem core. The AUTOSAR
model is based on the concept that the task model nd the
ommunicaton mplementaion s aomtically genred by
dedicaled tools conguration infomaion. e o
.ynm,....m.u.... uxlplzzfnnn consirainis. Such a ot
parmount inpectagoe when desgeing 3 LET mvp\mmnhunm

Do you want to know more

plattorm chow the feasibility of the proposed appruach. The paper

o Tor utomotive spplications.

bl reedd i the peacral problems of memerTwAre Thix pupes. In tis papr, e dhaw amcbagies Eom ll lcso

. nalyels of antomativs applicafions 4 muliisares. concepts and propose an mItsmM ‘approach 1o face the prob-

a b O u t t h I S W O r k ? i lem of implementing snd scheduling task communicstions i
multicores. We first provide a characterizatin of possble vari

. The introduction of safety-critical functions in automotive ants of the LET Mamsm Next, we discuss the implementation

syscms, together wih e adeat of mucon, pltfons, Wngs ot s LIt e i the AT AT i

n 3
e e o vethik the devclopment and exELution PR e AP ae e plasform that is ves

common in the

. for enbedded funcionalty. Devlopers neod high levels of stomotive domin and repesentaive o typical HW €onfg
I predictability. testability. and wlimately determinism in the pytigns; he Infincon Aurix microcontroller. Then, we provide

e(: I o u o u r a e r exccution of their code. The LET model was introduced s G anslyss of postible scnal implementation opons bused

. Pt of e GIOTTO Trsewok. (1] 1 climilc pl s o i ERIKA RIOS (complat i he OSEH oo

and provide time determinism in the code of standard and the typical behavior of
conrls, Recenly. thre has been 3 teneued st o the - ALTTOSAR OS kemel). FRally. e povide oo rsults o the
ET cxecuiion paradigm by aviomotive clectronics veodors. a5 cvaluation of a code inplementtion o splcaon proposed
witnessed by the reoent WATERS challenges 2] by Eosch in the context of the WA e 2]
In essence, the LET delays the program outpat of & task executed with our LET lmmm:nmmn on Dn: Aunx. Omtr
{or any function exccuted inside the fask) at the end of the related issues will be shortly discussed but are not

crod raing delay To otput e, Th LET model 1o of i woe, Inchiog fh sevedulibiny sy wh
also characterized by an exeeution model of functiondl UNISS explicit considerstion of memory contention
i cocuion rkr (cumally) comsxints. The adopin of

model brings to thy ol i concnt of 11 MODELING AND BACKGROUND.
et bt b o oty wheh s mous This paper considers allulwunm composed of a set of 1
laguges s hei implemtaions. s vk T 7). cach characterized by a

Gbscration is tht the LET exccntion model ot anly worshcase. execution time. (WCET) pomed T, md
Svoids AP et B has (e sddional DENEAt of scheduing EAdve deadine D, < Ty A Bound on the Resporse e

precisely in ime the accesses (0 the communications varisbles. of 7 is denoted by #,. The tasks cxecute upon a platform
This can. be extremely valuable in the multicore cxeculion of thal COMPTISES m PIOCESSOTS Py...., P With local memorics
ks communicatig semotly. Sever tchniqes e been M. M (one ff exh cort), nd 10k memery M
d to analyze the time pe real-time tasks The plaiform disposes of a crossbar switch that cnables poini
T ks i e o of . g of metnry shd o pAre Commmon iween cach cov o s
other hardware resources, including interconnects, arbiters and Concurtent accesses o memories are arbitrated with 3 FIFO
VO devises. Unforunately, COTS mukiicore platforms are not policy. Blocking memory access is ssumed, i.¢., no whte or
deigped vith e i of provdng eediuubily, wih e fead bl T e ehechled sconting 10 parlonad el
ience that conventional analysis techniques can be at prioriry scheduling, and Ap(i) denotes the set of tasks with
best pssimistic: The LET £xccution model b mprove and hgher prionty than . Eoch 1k 35 sutically allocated 10 &

Implementation (2)

The implementation required facing with three major issves:

2. Redlization of GMF tasks
« Memory vs. fime tfrade-off
« Possible approach: scheduling table
« Potentially needs to store information up to the hyper-period
* |t wouldintroduce a lot of duplicate information

« Hint: We are dealing with specific instances of GMF tasks!

* Leveraging some analytical properties of LET timing, GMF tasks can be
implemented with counters for each pair of communicating tasks

Need to keep track time to the next activation

/
< h i hmlb

task Ll :
time

Need to determine which communications must be performed

A. Biondi — IWES 2018

23

LET Tasks: Synchronization

« One GMF Task running at the highest priority in each core to
implement LET communication

« Access to shared memory is regulated by lightweight
spin-based synchronization

(o or)
Write

\!/
)

Update shared copy of data (copy from local
memory fo global memory)

Read shared copy of data (copy from global
memory to local memory)

Avoid contention when accessing the global memory (explicit
synchronization) removing pessimism in the analysis

Limited jitter

Potential priority inversion due to high-priority communication

A. Biondi — IWES 2018

24

OTHER
CONTRIBUTIONS

LET semantic options & analysis

Memory-aware RTA

 Objective: extend the response-time analysis for
partitioned fixed-priority scheduling to explicitly account
for delays due to memory contention

« Analysis design principles:
1. Use asimple task model (ho execution traces)
« Contention-free WCET
» Period and deadline
* Per-job max. number of accesses to global memory

2. Do not inflate WCETs but rather account for contention at the

stage of response-time analysis [inflafion-free analysis,
Brandenburg 2013]

o

* Provides a taste of the impact of any-tfime memory accesses on
response times

« Still, it is affected by considerable infrinsic pessimism...

A. Biondi — IWES 2018

26

Memory-aware RTA

With the proposed approach the analysis is simplified:
« Standard RTA for partitioned fixed-priority scheduling...

« ...plus a high-priority GMF task

« Parameters of the GMF tasks can be derived as a function of
» Periods of the periodic tasks
« Labels accessed by each task
» Configuration of the inter-core synchronization mechanism

H LH oy e [

oo I - - [- I

time

A. Biondi — IWES 2018

Clarifications on LET Semantics

 Warning: different scheduling decisions for LET communications
may lead to completely different LET semantics!

« The order with which read and write operations are performed is
really important
« Different orders also lead to different worst-case end-to-end latencies in task
chains

« A clear formalization of the adopted semantic is heeded to
avoid misunderstanding when talking about LET

To shed the light on possible pitfalls, the paper also discusses three
different LET semantic options, focusing on the impact of scheduling
decisions on end-fo-end latencies

A. Biondi — IWES 2018

28

Memory Contention on TC27x

inferference

1400

1200

=
o
o
o

800

600

Access time (musec)

400

200

A. Biondi — IWES 2018

Size of accessed memory (Kb)

solo

12

2 core

3 core

The buffer is accessed in a sequential fashion

16

Shared buffer of 20Kb allocated in LMU (global memory)
Core 0 is under analysis and accesses a portion of the buffer
Cores 1 and 2 are confinuously writing intfo the buffer to generate

20

+26%

Handling counters

1:
2
3
4
b
6:
‘7.
8
9
10:

A. Biondi — IWES 2018

procedure DO_WRITE_TICK()
(<:nt>_write_T6_T8 = cnt_write_T6_T8 -1
if (cnt_write_T6_T8 == 0) then
k’ﬁ,g — (k6,8 + 1) mod ’ng'gm
cnt_write_T6_T8 = jobs_T6_T8[ke s] -Ts/T1""
write_flags_T6 | = TURN_ON_FLAG_T6_T8
end if

()

end procedure

The WCET Issue

Test by Lockheed Martin Space Systems on 8-core platform

WCET can be 6
A | B Benchmark times larger
B Cache locked (255 pages) ,1,

competing with 1
1 core can double
the WCET

Normalized WCET

1 2 3 4 5 6 7 8
Number of active cores

Source: http://rtsl-edge.cs.illinois.edu/SCE/

A. Biondi — IWES 2018

Memory contention

E Contention delay

. Memory access

CPU #0 writing 9 labels
under analysis AT
time

CPU #1 m
time
cPU #14—]]“]]3]]

time
CPU #2 i
time
_ [HTHTHETE .
h [THTH .
time

time
A. Biondi — IWES 2018 32

Platform & System Model

Partitioned Fixed-Priority Scheduling

periodic
tasks with
constrained
deadlines

|
(
CPUO CPU1 CPU 2

LMO I LM 1 I LM 2 I

Crossbar

core local

memory -

(scratchpad)

\

provides point-to-point
7 GM communication between

global memory each core and memory

33

A. Biondi — IWES 2018

Inter-task Communication

e Tasks communicate by means of labels, i.e., atomic
shared variables (size < processor word)

« Realistic applications include thousands of labels, as
withessed by the 2017 WATERS Challenge data

provided by Bosch

« Communications through labels originate causality
dependencies and task chains, typically also across
different cores

10ms, CPU#0

A. Biondi — IWES 2018 34

Realizing LET Communication

Understanding & Modeling the timing of
LET communications

Coordination of LET communications
ACIroSsS COores (controlling the access to global memory)

A. Biondi — IWES 2018

LET Timing: Logical View

Understanding LET ftiming: not all reads and writes are

actually necessary

producer L -

I | ‘\ time
| Y \ Ta Py
Tz: \
I 1
consumer ! ‘
1 1
1 R .
' : (undersampling) time
1 1
o
1
1 I
1 I
\ |
T3|| : T I T
1
consumer ! ‘
' v .
| A " "’ time
\‘ : 1 %
\ "
Ty \)
\ 1
produce\‘r /! ‘
\ U >
7 ' .
N (oversampling) time

A. Biondi — IWES 2018 36

LET Timing: Scheduling

LET
task

(51
producer

T2
consumer

T3
consumer

Ta
producer

Irm

h_mb

hm h

A

A

(undersampling)

-

|

A. Biondi — IWES 2018

(oversampling)

LET Tasks

A
11
producer | |

Generalized Multi-Frame (GMF) Task

« Variable frames with different inter-arrival and
execution times

« Each frame consists in a set of read/write operations

« Frames are cyclically repeated and can be
determined off-ine as a function of the tasks’

periods and the communication map

producer | |

(oversampling) Hme
A. Biondi — IWES 2018 38

