
Achieving Predictable
Multicore Execution of

Automotive Applications
Using the LET Paradigm

Alessandro Biondi and Marco Di Natale
Scuola Superiore Sant’Anna, Pisa, Italy

2A. Biondi – IWES 2018

• The introduction of safety-critical functions in automotive
systems, together with the advent of multicore platforms, brings the
need to rethink the development and execution paradigms for
embedded functionality

Introduction

• Several issues in switching to multicores…
• Lack of appropriate modeling for partitioning applications
• Legacy SW with causality implicitly verified on single core
• Need for a portable timing model
• Achieving timing predictability is not trivial

• …plus increasingly stringent legal regulations and
certifiability requirements

3A. Biondi – IWES 2018

• Logical Execution Time (LET) introduced as a method to
eliminate output jitter and provide time determinism in the
implementation of control algorithms [Henzinger et al. 2003]

• LET can be realized with different scheduling strategies
provided that the desired semantic is respected

input output/action

Classical
design

time

LET
time

prone to large input/output jitter

Logical Execution Time

4A. Biondi – IWES 2018

time

Example from Dirk Ziegenbein’s talk
at Dagstuhl seminar on LET

5ms
Task

10ms
Task

20ms
Task

• Recent renewed attention on LET by automotive industry
• Several players are adopting LET to provide deterministic end-to-

end latencies of chains of communicating tasks
• LET seems a promising solution to also solve other issues in the

design and development of real-time systems (e.g., SW
portability, interface with control engineers, etc.)

Logical Execution Time

5A. Biondi – IWES 2018

This Talk

1
Scheduling strategy for realizing LET communication
in multicore platforms to achieve execution
predictability

2
Implementation on Aurix Tricore TC275 and
evaluation with a pseudo-realistic case study
(WATERS Challenge 2017 by Bosch)

LET AS AN
OPPORTUNITY TO
CONTROL MEMORY
CONTENTION

7A. Biondi – IWES 2018

Memory Contention

0

200

400

600

800

1000

1200

1400

4 8 12 16 20

Ac
ce

ss
 ti

m
e

(m
us

ec
)

Size of accessed memory (Kb)
solo 2 core 3 core

• Shared buffer of 20Kb in global
memory

• Core 0 is under analysis and
accesses a portion of the buffer

• Cores 1 and 2 are continuously
writing into the buffer to generate
interference

+26%

• Contention in accessing shared memories strongly harms the
predictability of software running upon multicores

• Any-time access to shared memories carries considerable
pessimism in timing/schedulability analysis

Testbed: Aurix Tricore TC27x

8A. Biondi – IWES 2018

Controlling Memory Contention
• Selling point: scheduling LET communication at the

beginning of periodic instances allows localizing the access
to shared memories in precise time windows

• Such time windows are determined by the tasks’ periods
• they are hence predictable (off-line)
• and can host explicit arbitration to avoid contention

time

time

9A. Biondi – IWES 2018

Realizing LET Communication
Local copies of data allocated in the scratchpads• Local copies of data allocated in the scratchpads

• Shared copies allocated in the global memory
• LET communication stack moves data from global to local memories

and viceversa

CPU 0 CPU 1 CPU 2 CPU 3

LM 0 LM 1 LM 2 LM3

Crossbar

GM

time

LET comm

Task

ℓ

read

ℓ

write

Preemptable task execution
with contention-free accesses

to local memory ℓ

10A. Biondi – IWES 2018

LET Tasks: Synchronization
• One task running at the highest priority in each core to

implement LET communication
• Access to shared memory is regulated by lightweight

spin-based synchronization

time

time

time

CPU #0

CPU #1

CPU #2

…

…

…

Write (output) Read (input) Busy waiting

11A. Biondi – IWES 2018

LET and AUTOSAR RTE
• The tasks implementing the LET communication can be

automatically generated as part of the AUTOSAR RTE
• Our approach is prone for being implemented in a model-

based design flow

• Integration within AUTOSAR
• RTE takes care of mirroring local copies according to the LET

paradigm
• RTE offers an API to access the local copies
• Local copies are accessed with explicit communication

time

Contention-free accesses to local memory

߬௜

LET
task

from global to local from local to global

RTE

Application

IMPLEMENTATION

13A. Biondi – IWES 2018

Implementation

• RTOS: Implementation based on ERIKA Enterprise v2
• OSEK certified
• De-facto representative of the typical behavior of AUTOSAR OSes
• Open-source

• Reference platform: Infineon Aurix TC275
• Asymmetric Tricore with scratchpads
• Widely adopted by the automotive industry
• Can be configured to match the abstract model

introduced before

14A. Biondi – IWES 2018

Aurix TC27x

Local (scratchpad)
data memories

Global memory

source: TC27x datasheet

15A. Biondi – IWES 2018

Implementation (1)
The implementation required facing with three major issues:

1. Synchronization of task activations across cores
• Solved using remote procedure call (RPC) features available in ERIKA
• Single timer connected to an OSEK counter handled in CPU #0
• CPU #0 uses RPC to activate the tasks in all the cores by means of

OSEK alarms (inter-core interrupts are leveraged)

CPU
0

CPU
1

CPU
2

HW
Timer

OSEK
counter

RPC
RPC

INT

16A. Biondi – IWES 2018

Implementation (2)
The implementation required facing with three major issues:

2. Inter-core synchronization to access global memory
• Similar strategy as for Mellor-Crummey & Scott locks
• Spin variables allocated to local scratchpads
• Each core can directly access all local scratchpads, hence making

notification of a spinning core easy (baton passing)
• Need to pay attention to achieve sequential consistency (barriers

with DSYNC)

CPU
0

CPU
1

CPU
2

CPU
3

LM0 LM1 LM2 LM3

Crossbar

GM

spin

notify

17A. Biondi – IWES 2018

Case Study
• Implementation tested with a case study
• Mock application generated from the model provided by

Bosch for the WATERS 2017 challenge – representative of an
engine control application

• ~20 tasks partitioned into the three cores of the TC275
• ~5000 labels (atomic variables) used by the tasks to communicate

• Experimental setup
• Infineon TriBoard v2 with TC275 @ 200MHz
• ERIKA Enterprise v2.7
• HIGHTECH Aurix C compiler v4.6
• Lauterbach PowerTrace-II & PowerDebug

18A. Biondi – IWES 2018

Code Generation

Amalthea model
(XML)

WATERS 2017 Challenge
provided by Bosch

Parser & Model transformation

Code Generator

Mock Application
(.c/.h)

RTOS
configuration

(OIL/.c)

RTE to access
labels
(.c/.h)

LET
communication

stack
(.c/.h)

19A. Biondi – IWES 2018

• The adoption of the LET paradigm significantly increase time
determinism –- it’s an additional system feature!

• From a scheduling (timing) perspective, our realization faces with
two conflicting trends

Experimental Results

Worst-case delays due to memory contention are
reduced. Pessimism is removed by design and
schedulability analysis is simplified.

High priority workload is required to perform LET
communications, which may harm latency-sensitive
tasks (priority inversion).

20A. Biondi – IWES 2018

Experimental Results
• What’s the impact of the proposed approach in terms of

run-time overhead and memory footprint?

• Despite the benefits in controlling memory contention, is the
priority inversion introduced by LET communication harmful?

Exec time first frame of LET tasks
(most expensive)

Footprint (in bytes)

+7.5% (can be lower for a real appplication)
Mostly due local copies of labels and code of LET
communication

21A. Biondi – IWES 2018

Conclusions
• Presented a scheme for practical implementation and

analysis of LET communication for multicore systems
• LET taken as an opportunity to control memory contention
• Implemented upon ERIKAv2 on Infineon Tricore TC275 and tested

with a case study based on an application model by Bosch

• Take-away messages
• Impact on run-time overhead has been found negligible
• The only concern may be the increase of footprint
• There are a lot of open problems and possible improvements

• Future works
• Ad-hoc schedulability analysis under the proposed scheme
• Holistic synthesis methodology that optimizes label

placement, the generation of the LET communication stack,
of buffers, and possibly the runnable placement

Thank you!
Alessandro Biondi
alessandro.biondi@sssup.it

Do you want to know more
about this work?

Check it out our RTAS2018 paper!

23A. Biondi – IWES 2018

Implementation (2)
The implementation required facing with three major issues:

2. Realization of GMF tasks
• Memory vs. time trade-off
• Possible approach: scheduling table

• Potentially needs to store information up to the hyper-period
• It would introduce a lot of duplicate information

• Hint: We are dealing with specific instances of GMF tasks!
• Leveraging some analytical properties of LET timing, GMF tasks can be

implemented with counters for each pair of communicating tasks

time

LET
task

Need to keep track time to the next activation

Need to determine which communications must be performed

24A. Biondi – IWES 2018

LET Tasks: Synchronization
• One GMF Task running at the highest priority in each core to

implement LET communication
• Access to shared memory is regulated by lightweight

spin-based synchronization

Update shared copy of data (copy from local
memory to global memory)

Write

Read shared copy of data (copy from global
memory to local memory)

Read

Avoid contention when accessing the global memory (explicit
synchronization) removing pessimism in the analysis

Limited jitter

X Potential priority inversion due to high-priority communication

OTHER
CONTRIBUTIONS
LET semantic options & analysis

26A. Biondi – IWES 2018

• Objective: extend the response-time analysis for
partitioned fixed-priority scheduling to explicitly account
for delays due to memory contention

• Analysis design principles:
1. Use a simple task model (no execution traces)

• Contention-free WCET
• Period and deadline
• Per-job max. number of accesses to global memory

2. Do not inflate WCETs but rather account for contention at the
stage of response-time analysis [inflation-free analysis,
Brandenburg 2013]

Memory-aware RTA

• Provides a taste of the impact of any-time memory accesses on
response times

• Still, it is affected by considerable intrinsic pessimism…

27A. Biondi – IWES 2018

Memory-aware RTA
With the proposed approach the analysis is simplified:
• Standard RTA for partitioned fixed-priority scheduling…
• …plus a high-priority GMF task
• Parameters of the GMF tasks can be derived as a function of

• Periods of the periodic tasks
• Labels accessed by each task
• Configuration of the inter-core synchronization mechanism

time

…

Task 1

Task 2

LET
Task

28A. Biondi – IWES 2018

• Warning: different scheduling decisions for LET communications
may lead to completely different LET semantics!

• The order with which read and write operations are performed is
really important

• Different orders also lead to different worst-case end-to-end latencies in task
chains

• A clear formalization of the adopted semantic is needed to
avoid misunderstanding when talking about LET

Clarifications on LET Semantics

To shed the light on possible pitfalls, the paper also discusses three
different LET semantic options, focusing on the impact of scheduling
decisions on end-to-end latencies

29A. Biondi – IWES 2018

Memory Contention on TC27x

0

200

400

600

800

1000

1200

1400

4 8 12 16 20

Ac
ce

ss
 ti

m
e

(m
us

ec
)

Size of accessed memory (Kb)

solo 2 core 3 core

• Shared buffer of 20Kb allocated in LMU (global memory)
• Core 0 is under analysis and accesses a portion of the buffer
• Cores 1 and 2 are continuously writing into the buffer to generate

interference
• The buffer is accessed in a sequential fashion

+26%

30A. Biondi – IWES 2018

Handling counters

31A. Biondi – IWES 2018

Number of active cores

0

2

4

6

N
or

m
al

iz
ed

 W
C

ET

1

3

5

1 2 3 4 5 6 7 8

Benchmark
Cache locked (255 pages)

Test by Lockheed Martin Space Systems on 8-core platform

competing with 1
core can double

the WCET

WCET can be 6
times larger

The WCET Issue

Source: http://rtsl-edge.cs.illinois.edu/SCE/

32A. Biondi – IWES 2018

Memory contention

time

time

time

Contention delay Memory access

CPU #0

CPU #1

under analysis

time

time

CPU #2

time

CPU #1

writing 9 labels

33A. Biondi – IWES 2018

Platform & System Model

CPU 0 CPU 1 CPU 2 CPU 3

LM 0 LM 1 LM 2 LM3

Crossbar

GM

core local
memory
(scratchpad)

global memory

provides point-to-point
communication between
each core and memory

T1
T2

T3
T4
T5

T6
T7

T8

Partitioned Fixed-Priority Scheduling

periodic
tasks with

constrained
deadlines

34A. Biondi – IWES 2018

Tasks communicate by means of labels, i.e., atomic
shared variables (size ≤ processor word)

Inter-task Communication

ℓ
• Realistic applications include thousands of labels, as

witnessed by the 2017 WATERS Challenge data
provided by Bosch

• Communications through labels originate causality
dependencies and task chains, typically also across
different cores

ℓ
ℓ
ℓ

ℓ

ℓ
Task 1 Task 2 Task 3

10ms, CPU#0

5ms, CPU#2

20ms, CPU#0

35A. Biondi – IWES 2018

Realizing LET Communication

Understanding & Modeling the timing of
LET communications

Coordination of LET communications
across cores (controlling the access to global memory)

36A. Biondi – IWES 2018

LET Timing: Logical View

(undersampling)

time

time

߬ଵ
producer

߬ଶ
consumer

(oversampling)

time

time

߬ଷ
consumer

߬ସ
producer

Write (output) Read (input)

Understanding LET timing: not all reads and writes are
actually necessary

37A. Biondi – IWES 2018

LET Timing: Scheduling

(undersampling)

(oversampling)

time

time

time

߬ଵ
producer

߬ଶ
consumer

time

time

߬ଷ
consumer

߬ସ
producer

LET
task

38A. Biondi – IWES 2018

LET Tasks

(undersampling)

(oversampling)

time

time

time

߬ଵ
producer

߬ଶ
consumer

time

time

߬ଷ
consumer

߬ସ
producer

LET
task

Generalized Multi-Frame (GMF) Task
• Variable frames with different inter-arrival and

execution times
• Each frame consists in a set of read/write operations
• Frames are cyclically repeated and can be

determined off-line as a function of the tasks’
periods and the communication map

