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Introduction

« The Iintroduction of safety-critical functions in automotive
systems, together with the advent of mulficore platforms, brings the

need fo rethink the development and execution paradigms for
embedded functionality

« Several issues in switching to multicores...

« Lack of appropriate modeling for partitioning applications
« Legacy SW with causality implicitly verified on single core
« Need for a portable timing model

» Achieving timing predictability is not trivial

* ...plus increasingly stringent legal regulations and
certifiability requirements 7

A. Biondi — IWES 2018




Logical Execution Time

« Logical Execution Time (LET) introduced as a method to
eliminate output jitter and provide time defterminism in the
Implementation of control algorithms [Henzinger et al. 2003]

« LET can be redlized with different scheduling sfrategies
provided that the desired semantic is respected
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Logical Execution Time

« Recent renewed attention on LET by automotive industry

» Several players are adopting LET to provide deterministic end-to-
end latencies of chains of communicating tasks

LET seems a promising solution to also solve other issues in the
design and development of real-time systems (e.g., SW
portability, interface with control engineers, etc.)
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Example from Dirk Ziegenbein’s talk
at Dagstuhl seminar on LET
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Scheduling strategy for realizing LET communication
in  mullicore platforms to achieve execution
predictability

Implementation on Aurix Tricore TC275 and

evaluation  with a pseudo-readlistic case study
(WATERS Challenge 2017 by Bosch)



LET AS AN
OPPORTUNITY TO
CONTROL MEMORY
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Memory Contention

« Contention in accessing shared memories strongly harms the
predictability of soffware running upon multicores

 Any-fime access to shared memories carries considerable
pessimism in fiming/schedulability analysis

Testbed: Aurix Tricore TC27x

Shared buffer of 20Kb in global
memory

Core 0 is wunder analysis and
accesses a portion of the buffer

Cores 1 and 2 are continuously
writing intfo the buffer to generate
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Controlling Memory Contention

- Selling point. scheduling LET communication at the
beginning of periodic instances allows localizing the access
to shared memories in precise time windows

« Such fime windows are determined by the tasks’ periods
* they are hence predicfable (off-line)
« and can host explicit arbitration fo avoid contention
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Realizing LET Communication

« Local copies of data allocated in the scratchpads
« Shared copies allocated in the global memory

and viceversa

* LET communication stack moves data from global to local memories
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Preemptable task execution
with contention-free accesses
to local memory
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LET Tasks: Synchronization

 One task running at the highest priority in each core to
implement LET communication

« Access to shared memory is regulated by lightweight
spin-based synchronization
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LET and AUTOSAR RTE

« The tasks implementing the LET communication can be
automatically generated as part of the AUTOSAR RTE

« Qur approach is prone for being implemented in a model-
based design flow

* Integration within AUTOSAR

« RTE takes care of mirroring local copies according to the LET
paradigm

« RTE offers an APl to access the local copies

» Local copies are accessed with explicit communication
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Implementation

 Reference platform: Infineon Aurix TC275
« Asymmetric Tricore with scratchpads
« Widely adopted by the automotive indusiry

« Can be configured to match the abstract model
infroduced before

« RTOS: Implementation based on ERIKA Enterprise v2
« OSEK certified
« De-facto representative of the typical behavior of AUTOSAR OSes

« Open-source
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Aurix TC27x
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Implementation (1)

The implementation required facing with three major issves:

1. Synchronization of task activations across cores
« Solved using remote procedure call (RPC) features available in ERIKA
» Single tfimer connected to an OSEK counter handled in CPU #0

« CPU #0 uses RPC to activate the tasks in all the cores by means of
OSEK alarms (inter-core interrupts are leveraged)

OSEK
counter
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Implementation (2)

The implementation required facing with three major issues:

2. Inter-core synchronization to access global memory
« Similar strategy as for Mellor-Crummey & Scott locks
« Spin variables allocated to local scratchpads

« Each core can directly access all local scratchpads, hence making
notificafion of a spinning core easy (bafon passing)

« Need to pay attention to achieve sequential consistency (barriers
with DSYNC)

: procedure LET_TASK_P_X( )
: do_write_tick()

busy_wait( spin_P_x_write == 0 )
spin_P_x_write = 0

do_write()
notify_next_processor_write()

do_read_tick()

busy_wait( spin_P_x_read == 0)
spin_P_x_read = 0

do_read()

12; notify_next_processor_read()

13: end procedure
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Case Study

* Implementation tested with a case study

 Mock application generated from the model provided by
Bosch for the WATERS 2017 challenge - representative of an
engine control application
» ~20 tasks partitioned into the three cores of the TC275
« ~5000 labels (atomic variables) used by the tasks to communicate

« Experimental setup
* Infineon TriBoard v2 with TC275 @ 200MHz
» ERIKA Enterprise v2.7
* HIGHTECH Aurix C compiler v4.6
» Lauterbach PowerTrace-Il & PowerDebug
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Code Generation

WATERS 2017 Challenge
provided by Bosch

Amalthea model
(XML)

\_ﬂ'/-

Parser & Model transformation

Code Generator

LET
Mock Application BTOS : RTE to access communication
(.c/.h) configuration labels stack
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Experimental Results

« The adopftion of the LET paradigm significantly increase time
determinism — it's an additional system featurel

« From a scheduling (timing) perspective, our realization faces with
two conflicting trends
f Worst-case delays due to memory contention are

reduced. Pessimism is removed by desion and
schedulability analysis is simplified.

High priority workload is required to perform LET
communications, which may harm latency-sensitive
tasks (priority inversion).
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Experimental Results

e What's the impact of the proposed approach in terms of
run-tfime overhead and memory footprinte

e Despite the benefits in controling memory contention, is the
priority inversion infroduced by LET communication harmful?

Exec time first frame of LET tasks

(most expensive) % os
core | net execution time [us] 2 os
1 3.8 Eos
2 108.76 &
3 148.2 £ o2
S _ : ) I
; ISR9 Task1ls Task ISR4 Task ISR3 ISR8 Task ISRl ISR7 Task Task
10ms 20ms 100ms 50ms 5ms
W LET = Explicit
Footprint (in bytes)
text data bss +7.5% (can be lower for a real appplicati
. ppplication)
LET, : 393064 | 4904 | 88328 Mostly due local copies of labels and code of LET
Explicit | 359872 | 4784 | 80752 communication
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Conclusions

* Presented a scheme for pracfical implementation and
analysis of LET communication for multicore systems

« LET taken as an opportunity to control memory contention

* Implemented upon ERIKAvV2 on Infineon Tricore TC275 and tested
with a case study based on an application model by Bosch

 Take-away messages
« Impact on run-time overhead has been found negligible
 The only concern may be the increase of footprint
* There are a lot of open problems and possible improvements

* Future works
« Ad-hoc schedulability analysis under the proposed scheme

» Holistic synthesis methodology that optimizes label
placement, the generation of the LET communication stack,
# of buffers, and possibly the runnable placement

A. Biondi — IWES 2018
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Implementation (2)

The implementation required facing with three major issves:

2. Redlization of GMF tasks
« Memory vs. fime tfrade-off
« Possible approach: scheduling table
« Potentially needs to store information up to the hyper-period
* |t wouldintroduce a lot of duplicate information

« Hint: We are dealing with specific instances of GMF tasks!

* Leveraging some analytical properties of LET timing, GMF tasks can be
implemented with counters for each pair of communicating tasks

Need to keep track time to the next activation

/
< h i hmlb

task Ll :
time

Need to determine which communications must be performed
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LET Tasks: Synchronization

« One GMF Task running at the highest priority in each core to
implement LET communication

« Access to shared memory is regulated by lightweight
spin-based synchronization

(o or )
Write

\!/
)

Update shared copy of data (copy from local
memory fo global memory)

Read shared copy of data (copy from global
memory to local memory)

Avoid contention when accessing the global memory (explicit
synchronization) removing pessimism in the analysis

Limited jitter

Potential priority inversion due to high-priority communication
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OTHER
CONTRIBUTIONS

LET semantic options & analysis



Memory-aware RTA

 Objective: extend the response-time analysis for
partitioned fixed-priority scheduling to explicitly account
for delays due to memory contention

« Analysis design principles:
1. Use asimple task model (ho execution traces)
« Contention-free WCET
» Period and deadline
* Per-job max. number of accesses to global memory

2. Do not inflate WCETs but rather account for contention at the

stage of response-time  analysis  [inflafion-free  analysis,
Brandenburg 2013]

o

* Provides a taste of the impact of any-tfime memory accesses on
response times

« Still, it is affected by considerable infrinsic pessimism...

A. Biondi — IWES 2018
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Memory-aware RTA

With the proposed approach the analysis is simplified:
« Standard RTA for partitioned fixed-priority scheduling...

« ...plus a high-priority GMF task

« Parameters of the GMF tasks can be derived as a function of
» Periods of the periodic tasks
« Labels accessed by each task
» Configuration of the inter-core synchronization mechanism
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time
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Clarifications on LET Semantics

 Warning: different scheduling decisions for LET communications
may lead to completely different LET semantics!

« The order with which read and write operations are performed is
really important
« Different orders also lead to different worst-case end-to-end latencies in task
chains

« A clear formalization of the adopted semantic is heeded to
avoid misunderstanding when talking about LET

To shed the light on possible pitfalls, the paper also discusses three
different LET semantic options, focusing on the impact of scheduling
decisions on end-fo-end latencies

A. Biondi — IWES 2018
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Memory Contention on TC27x
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Size of accessed memory (Kb)

solo
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2 core

3 core

The buffer is accessed in a sequential fashion

16

Shared buffer of 20Kb allocated in LMU (global memory)
Core 0 is under analysis and accesses a portion of the buffer
Cores 1 and 2 are confinuously writing intfo the buffer to generate
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Handling counters

1:
2
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b
6:
‘7.
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9
10:
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procedure DO_WRITE_TICK( )
(<:nt>_write_T6_T8 = cnt_write_T6_T8 -1
if (cnt_write_T6_T8 == 0) then
k’ﬁ,g — (k6,8 + 1) mod ’ng'gm
cnt_write_T6_T8 = jobs_T6_T8[ke s] -Ts/T1""
write_flags_T6 | = TURN_ON_FLAG_T6_T8
end if

()

end procedure



The WCET Issue

Test by Lockheed Martin Space Systems on 8-core platform

WCET can be 6
A | B Benchmark times larger
B Cache locked (255 pages) ,1,

competing with 1
1 core can double
the WCET

Normalized WCET

1 2 3 4 5 6 7 8
Number of active cores

Source: http://rtsl-edge.cs.illinois.edu/SCE/
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Memory contention

E Contention delay

. Memory access

CPU #0 writing 9 labels
under analysis AT
time

CPU #1 m
time
cPU #14—]]“]]3]]

time
CPU #2 i
time
_ [HTHTHETE .
h [THTH .
time

time
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Platform & System Model

Partitioned Fixed-Priority Scheduling

periodic
tasks with
constrained
deadlines

|
(
CPUO CPU1 CPU 2

LMO I LM 1 I LM 2 I

Crossbar

core local

memory -

(scratchpad)

\

provides point-to-point
7 GM communication between

global memory each core and memory

33
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Inter-task Communication

e Tasks communicate by means of labels, i.e., atomic
shared variables (size < processor word)

« Realistic applications include thousands of labels, as
withessed by the 2017 WATERS Challenge data

provided by Bosch

« Communications through labels originate causality
dependencies and task chains, typically also across
different cores

10ms, CPU#0
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Realizing LET Communication

Understanding & Modeling the timing of
LET communications

Coordination of LET communications
ACIroSsS COores (controlling the access to global memory)
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LET Timing: Logical View

Understanding LET ftiming: not all reads and writes are

actually necessary
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LET Timing: Scheduling

LET
task

(51
producer
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LET Tasks

A
11
producer | |

Generalized Multi-Frame (GMF) Task

« Variable frames with different inter-arrival and
execution times

« Each frame consists in a set of read/write operations

« Frames are cyclically repeated and can be
determined off-ine as a function of the tasks’

periods and the communication map

producer | |

(oversampling) Hme
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