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Hybrid systems and nonlinearity

Why consider systems as hybrid?

Real systems composed of a
controller with switching discrete
states and an environment with
evolving continuous variables.

Why consider systems as nonlinear?

The environment is rarely linear, sometimes specifically exploiting
nonlinearity (e.g., analog electronics).

In general, for our formal results we want to be as faithful to the real
system as possible
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Reachability analysis

To verify whether a dynamical system satisfies some properties, we
describe its behaviour by computing the set of reached states
(reachable set) Re.

� It allows full observation of system evolution (compared to
abstraction methods).

Re is not computable in general, in particular for nonlinear systems.

Re can be approximated, but not in both an effective and efficient
way.

� Some operations on accurate representations are still undecidable.

� Coarse approximations are problematic in terms of reliability of results.
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How to approximate regions

Possible choices of approximating Re:

1. Inner approximation I : Re strictly contains I .

2. Outer approximation O: Re is strictly contained in O (an
over-approximation of Re).

3. ε-lower approximation Lε: every point of Lε is at a distance less
than ε from Re (an over-approximation of a subset of Re).

� Inner approximation is not computable in general.

� Outer and ε-lower approximations can be used to verify/falsify
properties.
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Property satisfaction in terms of sets
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� Re is the reachable set, which is unobservable.

� S1, S2 are sets satisfying given properties.

� O is the outer approximation of Re.

� Lε is the ε-lower approximation of Re.
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A summary of Ariadne

� Developed by a joint team including the University of Verona, the
University of Maastricht, the University of Padova, and the University
of Barry (Florida)

� Uses the formalism of hybrid automata to describe nonlinear
time-continuous systems.

� Based on rigorous semantics paired with interval arithmetics to
guarantee correctness of verification over approximated sets.

� Written as a C++ library, released as an open source distribution:
http://www.ariadne-cps.org
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Semantics used for evolution

Upper semantics

When numerical inaccuracies make the transition undecidable, all possible
choices are taken. Computed sets do not need to include a point of Re.

Lower semantics

When numerical inaccuracies make the transition undecidable, evolution
stops. Computed sets must include at least one point of Re.
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Reachable set approximations available

Ariadne can compute the following approximations of the reachable set
(available semantics under parentheses):

� An over-approximated subset, up to a given time t : for
proving/disproving properties where a bound on the evolution time is
identified [upper, lower];

� An outer approximation : for proving properties using infinite-time
evolution [upper];

� For a given ε > 0, an ε-lower approximation : for disproving
properties using infinite-time evolution [lower].
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Some verification procedures available

Safety

Verify whether a system
satisfies some given safety
properties.

Dominance

Given two controllers, verify
which one has the largest
safety margin for given
closed-loop requirements.

Both these verifications can be performed parametrically by analyzing
intervals of constants and splitting the resulting parameters space.
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Current field of application: robotic surgery

� Very strict safety requirements.

� Increasing reliance on assisted control for improved accuracy.

� Traditionally focused on control theory specifications, recently
adopting formal verification approaches.
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Improving the engine

Better control of over-approximation error

Tune evolution parameters according to local dynamics and quality metrics
provided by the user

Alternative set representations

Adopt different set representations for different subsystems, in order to
improve scalability (requires decoupling of subsystems)
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Increasing capabilities of the library

Implement differential inclusions

Allow to model noisy inputs, thus expanding the validity of verification
results. Also required to model unspecified inputs, enabling the verification
of subsystems in partial isolation

Extend the model to introduce modularity

Allow component instances, safe substitution of components

Expand the verification/automation routines

For example:

� controller synthesis starting from desired properties

� contract-based design for modular systems

12 / 12



Increasing capabilities of the library

Implement differential inclusions

Allow to model noisy inputs, thus expanding the validity of verification
results. Also required to model unspecified inputs, enabling the verification
of subsystems in partial isolation

Extend the model to introduce modularity

Allow component instances, safe substitution of components

Expand the verification/automation routines

For example:

� controller synthesis starting from desired properties

� contract-based design for modular systems

12 / 12



Increasing capabilities of the library

Implement differential inclusions

Allow to model noisy inputs, thus expanding the validity of verification
results. Also required to model unspecified inputs, enabling the verification
of subsystems in partial isolation

Extend the model to introduce modularity

Allow component instances, safe substitution of components

Expand the verification/automation routines

For example:

� controller synthesis starting from desired properties

� contract-based design for modular systems

12 / 12


	Introduction
	The software package Ariadne
	Future developments

