An Optimized Task -Based
Programming Model for
Embedded Many -core
Computing Platforms

Giuseppe Tagliavini
Andrea Marongiu
Luca Benini

Contact : giuseppe.tagliavini@unibo.it

IWES 2017, Rome

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

Introduction

e OpenMP tasking model
e Main contributions

e Experimental results

e Conclusion

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

Many-core accelerators...

e Many-core accelerators are a promising solution for energy- efficient
embedded computing systems

e Clustered parallel accelerators - multiple clusters that are equipped with
processing units tightly-coupled with a shared low-latency L1 scratchpad
memory.

é N
H M — MAST @@ @ @ @
PORT PORT | (=) (20

Mermory

LOW-LATENCY INTERCONNECT

[| |
SLAVE SLAVE SLAVE
L2/13 PORT PORT PORT []
BRIDGE o) o]
> >

= =
AR | mewas =

= =

0 NVd

) J
V
| System INTERCONNECT J '
@ Kalray MPPA J KALRAY
mem CTRL 16 cluster = 16 core = 256 COIle
DRAM

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

... With proper SW support

e Clustered many-core designs offer tremendous
GOps/Watt, and parallel potential...
e _.but extracting peak performance at application level remains hard

e Traditional form of parallelism exploited in large systems is
data-parallelism
e e.g, loop based

e New applications expose irregular/structured parallelism
e Often, more levels (nested parallelism)

e Need for programming abstractions to support parallelism in
an elastic/dynamic way

e Flexible and scalable solution = OFFLOADING + TASKING

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

Offload model

A8 p_SOCRATES
|/o c|uster Offload request HE

OpenMP Runtime/Erika MV’

EVIDENCE®

THH,

2MB RAM

o TTTTTEE

Caomputing cluster —

16 x

Resou rce
Manager

Main requirement:
PREDICTABILITY

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

Introduction

e OpenMP tasking model
e Main contributions

e Experimental results

e Conclusion

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

OpenMP tasking

We propose a fully compliant implementation of
OpenMP tasking for embedded parallel accelerator
with ultra-low overhead , higher performance and

higher predictability compare to current OpenMP
Implementations

e Why OpenMP?

e Widely adopted programming model for shared memory systems
e Several implementation for embedded system are available
e Simple pragma-based programming interface

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

OpenMP tasking model

A task graph is dynamically constructed at runtime

#pragnma onp parall el

{
#pragma onp single

{

} /* TSP */
} /* TSP */

Team

. . EXECUTE

y

Waiting threads [% % %] TSP

OpenMP defines task scheduling points (TSP) in a program, where the encountering task
can be suspended and the hosting thread can be rescheduled to a different task.

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

Introduction

e OpenMP tasking model
e Main contributions

e Experimental results

e Conclusion

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

Task types

e |f suspended, it can later only be resumed by the same thread that originally started it
e Trade-off between ease of programming and scheduling flexibility

e Untied task

e |f suspended, they can later be resumed by any thread
e Significantly increasing the achievable parallelisxn and schedulability

|
. I
#pragma onp parall el thread 1--1- l ———— :Ifz————l- idle
{ -
#oragm omp i ol o oveado T3 [
PaN l

{

Y /% TSP */
} /% TSP */

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

Task scheduling

/

N DefaUIt /

 Breadth-first scheduling (3 (g u

1o e The parent task creates all'thd
children tasks and pushes them
in the working queue continuing
the execution until the end of task

e Tends to be more demanding in
terms of memory -

Work-first scheduling (W&S
e Suspends the parent ta$

I 4 .

/ T0 \ ’ ; .

° execution of the new task @, &
/ O O e Lower demands of memory |
\ / e Better data locality - follow the

path of the original sequential
program

e Needs untied tasks

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

on tasking:

e Time overheads

accelerators is often limited to coarse-grained tasks

e The runtime must support fine-grain tasks to exploit in a efficient way
parallel workloads

e Space overheads -

e In resource-constrained systems that are based on space-limited
scratchpad memory, is very important having RTE with a low memory
footprint to leave as much as possible memory to the application data

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

Introduction

e OpenMP tasking model
e Main contributions

e Experimental results

e Conclusion

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

Offload on ERIKA/Kalray MPPA

e Different implementation of

(multi-)OFFLOAD COST synchronization primitives
(#pragma omp parallel) — BLOCK_IMMEDIATE the
100 condition is checked in a busy

waiting loop;
— BLOCK_OS informs the OS
that the OpenMP thread is
- “idle”. The OS can then block
20 N L this thread and schedule
another one in the ready

BLOCK_IM BLOCK OS BLOCK_NO queue;

PSOC SDK — BLOCK_NO (LIMITED
PREEMPTION) informs the OS
that the OpenMP thread has
reached a TASK SCHEDULING

i i POINT. If a higher-priority
Fairly high cost for offload startup on clusters thread is found in the ready

(parallel). Main reason is management of non- queue it gets scheduled.
coherent caches |

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

80

60

Cycles [X1000]

KALRAY

SDK

MIN = MAX

@ RECURSIVE PATTERN

ollic o
(ns) (ne) (n) (o) i MIXED PATTERN
@ @) @ @ @ @ @

() @) @) @) @ @) @ () 0
() () () (n)
|

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

TIED vs UNTIED: linear

16

14

12

10

Speedup
(o]

—O—untied WFS
++ Q-+ untied BFS
—{J—tied BFS
- tied WFS

1 5 7.5 10 50 100 500 1000

Task granularity [Kcycles]

No relevant difference between WFS / BFS and tied/u ntied tasks!

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

TIED vs UNTIED: recursive

16
14
12
Q_10
=]
8 8 G— D7D
(]
c% el o =O—untied WFS
««O-- untied BFS
4 ={J—tied BFS
2 <3 tied WFS
........................ DD.D..D
0

1 5 7.5 10 50 100 500 1000

Task granularity [Kcycles]

Untied tasks with WFS achieve the maximum speedup

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

TIED vs UNTIED: mixed

VIS MDY S S X2
7
6 =0=—OPT untied
5 —O—OPT tied
o
s | /7 | . IDEAL untied
o4
4 .
2 — — IDEAL tied
3
2 — PPPP???7?7
1
0

1 5 10 50 100 1000

Task granularity [Kcycles]

Using tied tasks, 14 cores are allocated to execute the linear part of the
application -> 7 are blocked by the taskwait directive |

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

Comparison with other embedded
runtimes (recursive pattern)

Low-granularity tasks

|
16 ||
|
14 |, I
12 : : Near-ideal speedup for one order of
] | magnitude smaller tasks
o 10 | |
3 I I
§- 8 [| Neweees
Y 6 : —O—OUR untied (CO)
I | —{J—OUR tied (CO)
4 [A I KALRAY
1 O I -+O-+ DATE13
2 1o | .-[}- SIM untied
[I KALRAY (CO)
0 5 I

5_ 7.5 10 50 100 500 1000
g E Task granularity [Kcycles]
@ &

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

Introduction

e OpenMP tasking model
e Main contributions

e Experimental results

e Conclusion

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

Where we are, where we are going

e Optimized runtime for OpenMP tasking
e Support of untied tasks based on lightweight co-routines
e Data structure policies to reduce memory footprint
e Allocation policies to reduce task creation time
e Cut-off policies to reduce execution time

e Work in progress and evolutions:
e Impact of tasking on alternative architectural templates
e Offload on heterogeneous platforms

e |ntegration with alternative programming models (OpenCL,
OpenVX, CUDA, ...)

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

Questions? ldeas?

Contact : giuseppe.tagliavini@unibo.it

Work supported by EU-funded ERC advanced project
X ?"12
5|
& Multitherman |

