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Many-core accelerators...

e Many-core accelerators are a promising solution for energy- efficient
embedded computing systems

e Clustered parallel accelerators - multiple clusters that are equipped with
processing units tightly-coupled with a shared low-latency L1 scratchpad
memory.
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... With proper SW support

e Clustered many-core designs offer tremendous
GOps/Watt, and parallel potential...
e _.but extracting peak performance at application level remains hard

e Traditional form of parallelism exploited in large systems is
data-parallelism
e e.g, loop based

e New applications expose irregular/structured parallelism
e Often, more levels (nested parallelism )

e Need for programming abstractions to support parallelism in
an elastic/dynamic way

e Flexible and scalable solution = OFFLOADING + TASKING
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Offload model

A8 p_SOCRATES
|/o c|uster Offload request HE

OpenMP Runtime/Erika MV’

EVIDENCE®

THH,

2MB RAM

o TTTTTEE

Caomputing cluster —

16 x

Resou rce
Manager

Main requirement:
PREDICTABILITY

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA




Introduction

e OpenMP tasking model
e Main contributions

e Experimental results

e Conclusion

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA



OpenMP tasking

We propose a fully compliant implementation of
OpenMP tasking for embedded parallel accelerator
with ultra-low overhead , higher performance and

higher predictability compare to current OpenMP
Implementations

e Why OpenMP?

e Widely adopted programming model for shared memory systems
e Several implementation for embedded system are available
e Simple pragma-based programming interface
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OpenMP tasking model

A task graph is dynamically constructed at runtime

#pragnma onp parall el

{
#pragma onp single

{

} /* TSP */
} /* TSP */

Team

. . EXECUTE

y

Waiting threads [% % %] TSP

OpenMP defines task scheduling points (TSP) in a program, where the encountering task
can be suspended and the hosting thread can be rescheduled to a different task.
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Task types

e |f suspended, it can later only be resumed by the same thread that originally started it
e Trade-off between ease of programming and scheduling flexibility

e Untied task

e |f suspended, they can later be resumed by any thread
e Significantly increasing the achievable parallelisxn and schedulability
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Task scheduling
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on tasking:

e Time overheads

accelerators is often limited to coarse-grained tasks

e The runtime must support fine-grain tasks to exploit in a efficient way
parallel workloads

e Space overheads -

e In resource-constrained systems that are based on space-limited
scratchpad memory, is very important having RTE with a low memory
footprint to leave as much as possible memory to the application data
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Offload on ERIKA/Kalray MPPA

e Different implementation of

(multi-)OFFLOAD COST synchronization primitives
(#pragma omp parallel) — BLOCK_IMMEDIATE the
100 condition is checked in a busy

waiting loop;
— BLOCK_OS informs the OS
that the OpenMP thread is
- “idle”. The OS can then block
20 N L this thread and schedule
another one in the ready

BLOCK_IM  BLOCK OS  BLOCK_NO queue;

PSOC SDK — BLOCK_NO (LIMITED
PREEMPTION) informs the OS
that the OpenMP thread has
reached a TASK SCHEDULING

i i POINT. If a higher-priority
Fairly high cost for offload startup on clusters thread is found in the ready

(parallel). Main reason is management of non- queue it gets scheduled.
coherent caches |
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TIED vs UNTIED: linear
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No relevant difference between WFS / BFS and tied/u ntied tasks!
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TIED vs UNTIED: recursive
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Untied tasks with WFS achieve the maximum speedup
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TIED vs UNTIED: mixed
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Using tied tasks, 14 cores are allocated to execute the linear part of the
application -> 7 are blocked by the taskwait directive |
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Comparison with other embedded
runtimes (recursive pattern)

Low-granularity tasks
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Where we are, where we are going

e Optimized runtime for OpenMP tasking
e Support of untied tasks based on lightweight co-routines
e Data structure policies to reduce memory footprint
e Allocation policies to reduce task creation time
e Cut-off policies to reduce execution time

e Work in progress and evolutions:
e Impact of tasking on alternative architectural templates
e Offload on heterogeneous platforms

e |ntegration with alternative programming models  (OpenCL,
OpenVX, CUDA, ...)
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Questions? ldeas?

Contact : giuseppe.tagliavini@unibo.it
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