
An Optimized Task-Based Programming Model for
Embedded Many-core Computing Platforms

Nowadays multi- and many-core computing platforms are
widely adopted as a viable solution to accelerate compute-
intensive workloads. Inter alia, heterogeneous platforms in-
cluding a general-purpose host processor and a parallel pro-
grammable accelerator have the potential to dramatically in-
crease the peak performance/Watt of embedded platforms. Par-
allel accelerators provide tens to hundreds of small processing
elements (PEs), typically organized in clusters sharing on-
chip L1 memory and communicating via low-latency, high-
throughput on-chip interconnections. PEs are simpler w.r.t.
common multi-core architectures to offer a better tradeoff
between parallel computation and power consumption. Parallel
accelerators differ from GPGPUs in two main traits. First, PEs
are not restricted to run the same instruction on different data,
in an effort to improve execution efficiency of branch-rich
computations and to support a more flexible workload-to-PE
distribution. Second, embedded many-core accelerators do not
rely on massive multithreading to hide memory latency, but
they rely instead on DMA engines and double buffering, which
give more control on the bandwidth vs. latency tradeoff, but
require more programming effort. The adoption of these de-
vices highly complicates application development, whereas it
is widely acknowledged that software development is a critical
activity for the platform design, as it affects development cost
and time-to-market. The introduction of parallel architectures
raises the need for programming paradigms capable of effec-
tively leveraging an increasing number of processors. Accord-
ing to software engineering principles, programming models
should expose high-level constructs for outlining the available
parallelism in applications, without the need for programmers
to handle performance scalability issues by expertizing on low-
level hardware details. In this scenario the study of optimiza-
tion techniques to program parallel accelerators is paramount
for two main objectives: first, improving performance and
energy efficiency of the platform, which are key metrics
for embedded computing systems; second, enforcing software
engineering practices with the aim to guarantee code quality
and reduce software costs.

In this technical presentation we discuss the use of
OpenMP tasking as a general-purpose programming model to
support the execution of diverse workloads, and we introduce
a set of runtime-level techniques to support fine-grain tasks
on many-core accelerators. The tasking abstraction provides a
powerful conceptual framework to exploit irregular parallelism
in embedded applications, but its practical implementation
requires sophisticated runtime support, which typically implies
important space and time overheads. The applicability of this
approach is often limited to applications exhibiting work units
which are coarse-grained enough to amortize these overheads.
While this is often the case for general-purpose systems and
associated workloads, things are different when considering
embedded computing systems. Minimizing runtime overheads

is thus a primary challenge to enable the benefits of tasking
on these systems. We designed an optimized runtime environ-
ment supporting the OpenMP tasking model on an embedded
shared-memory cluster [1] [2], validating our work on a
cycle-accurate virtual platform and then performing tests on
hardware platforms (ST Microelectronics STHORM [4] [3]),
Kalray MPPA and PULP [6]). We also provide support to un-
tied tasks, which can be resumed by any available thread, thus
significantly increasing the potential for parallelism exploita-
tion. On top of this extended runtime, we implement support
for work-first-scheduling (WFS) and associated cutoff policies.
Experimental results on compute-intensive applications high-
lights three main benefits. First, our solution can achieve the
maximum speed-up with an average task granularity of 7500
cycles, while previous approaches require about 100000 cycles
to achieve the same performance level. Second, WFS enables
significantly higher speedups (up to 60%) when untied tasks
are used in recursive patterns. Third, cutoff policies on top of
the provided support for untied tasks allow to achieve nearly-
ideal speedups for recursive patterns around 5K cycles. These
features enable the adoption of OpenMP tasking in embedded
runtime environments, including state-of-the-art applications in
the time-critical domain [5].

REFERENCES
[1] P. Burgio, G. Tagliavini, A. Marongiu, and L. Benini, “Enabling fine-

grained OpenMP tasking on tightly-coupled shared memory clusters,” in
Design, Automation Test in Europe Conference Exhibition (DATE), 2013,
2013, pp. 1504–1509.

[2] P. Burgio, G. Tagliavini, F. Conti, A. Marongiu, and L. Benini, “Tightly-
coupled hardware support to dynamic parallelism acceleration in em-
bedded shared memory clusters,” in Proceedings of the conference on
Design, Automation & Test in Europe. European Design and Automation
Association, 2014, p. 156.

[3] A. Marongiu, A. Capotondi, G. Tagliavini, and L. Benini, “Improving
the programmability of STHORM-based heterogeneous systems with
offload-enabled OpenMP,” in Proceedings of the First International
Workshop on Many-core Embedded Systems. ACM, 2013, pp. 1–8.

[4] ——, “Simplifying many-core-based heterogeneous soc programming
with offload directives,” IEEE Transactions on Industrial Informatics,
vol. 11, no. 4, pp. 957–967, 2015.

[5] L. M. Pinho, E. Quiones, M. Bertogna, A. Marongiu, J. P. Carlos,
C. Scordino, and M. Ramponi, “P-SOCRATES: A Parallel Software
Framework for Time-Critical Many-Core Systems,” in 2014 17th Eu-
romicro Conference on Digital System Design. IEEE, 2014, pp. 214–
221.

[6] D. Rossi, I. Loi, F. Conti, G. Tagliavini, A. Pullini, and A. Marongiu,
“Energy efficient parallel computing on the pulp platform with support
for openmp,” in Electrical & Electronics Engineers in Israel (IEEEI),
2014 IEEE 28th Convention of. IEEE, 2014, pp. 1–5.


