
PREEMPTABLE PARTIAL

RECONFIGURATION FOR REAL-TIME

COMPUTING WITH FPGAS

Enrico Rossi

1

INTRODUCTION

Computer platforms are evolving towards

heterogeneous architectures:

 FPGAs

 SoCs (FPGA + Hardware processor)

These new architectures and their features are

attractive for real-time systems. The most attractive

feature is:

 Dynamic Partial Reconfiguration (DPR)

2

INTRODUCTION

Dynamic partial reconfiguration enables the possibility
to reconfigure a portion of the FPGA at runtime,
while the rest of the FPGA continues to operate.

Different kind of systems can benefit from this feature
to enhance the overall performance:

 Real-Time Systems

 Mixed-Criticality Systems

3

INTRODUCTION

The FPGA can be seen as a co-processor that exploits

the hardware resources to carry out on-demand,

computationally intensive tasks.

4

DPR allows the Core to load inside the FPGA the

required hardware module only when it is

necessary.

System on Chip (SoC)

Hard/Soft

Core
FPGA

Reconfig.

Interface

DPR PROBLEMS

5

Currently, the main problem is the Reconfiguration
Interface.

 Each reconfiguration process must be finished or aborted.

 No possibility to resume a reconfiguration process.

 There are more than one Reconfig. Interface but only one
at a time can be used.

DPR PROBLEMS

6

Currently, the main problem is the Reconfiguration
Interface.

 Each reconfiguration process must be finished or aborted.

 No possibility to resume a reconfiguration process.

 There are more than one Reconfig. Interface but only one
at a time can be used.

The Reconfiguration Interface is

NOT PREEMPTABLE!

MULTI CORE MIXED CRITICALITY SYSTEMS

7

Core #1

Real Time Tasks

Core #2

Best Effort Tasks

Reconfiguration Interface

FPGA

Both RT tasks and BE tasks can trigger a hardware
reconfiguration. The reconfiguration interface will
be a shared resource between the two cores and
among all tasks.

8

 SW tasks with Fixed Priority scheduling

 Each SW task can issue a hardware reconfiguration

process

 Reconfiguration process can not be preempted or aborted

PRIORITY INVERSION

9

 SW tasks with Fixed Priority scheduling

 Each SW task can issue a hardware reconfiguration

process

 Reconfiguration process can not be preempted or aborted

PRIORITY INVERSION

10

 SW tasks with Fixed Priority scheduling

 Each SW task can issue a hardware reconfiguration

process

 Reconfiguration process can not be preempted or aborted

PRIORITY INVERSION

11

 SW tasks with Fixed Priority scheduling

 Each SW task can issue a hardware reconfiguration

process

 Reconfiguration process can not be preempted or aborted

PRIORITY INVERSION

12

STARVATION

 Real Time task (T1) has priority over Best Effort task (T2)

 The reconfiguration interface is not preemptive

 The reconfiguration process can be aborted

 The reconfiguration process must be resumed from scratch

13

STARVATION

 Real Time task (T1) has priority over Best Effort task (T2)

 The reconfiguration interface is not preemptive

 The reconfiguration process can be aborted

 The reconfiguration process must be resumed from scratch

14

STARVATION

 Real Time task (T1) has priority over Best Effort task (T2)

 The reconfiguration interface is not preemptive

 The reconfiguration process can be aborted

 The reconfiguration process must be resumed from scratch

15

STARVATION

 Real Time task (T1) has priority over Best Effort task (T2)

 The reconfiguration interface is not preemptive

 The reconfiguration process can be aborted

 The reconfiguration process must be resumed from scratch

16

STARVATION

 Real Time task (T1) has priority over Best Effort task (T2)

 The reconfiguration interface is not preemptive

 The reconfiguration process can be aborted

 The reconfiguration process must be resumed from scratch

PRIORITY INVERTION AND STARVATION

17

Without a preemptable interface:

 The delay experienced by the higher priority task

could be very high.

 High priority tasks could miss their deadline!

 Upper bound of the delay experienced by the Best

Effort task cannot be found.

18

PREEMPTABLE RECONFIGURATION

 Real Time task (T1) has priority over Best Effort

task (T2)

 The reconfiguration process is preemptable

 Hardware reconfiguration can be resumed

19

PREEMPTABLE RECONFIGURATION

 Real Time task (T1) has priority over Best Effort

task (T2)

 The reconfiguration process is preemptable

 Hardware reconfiguration can be resumed

20

PREEMPTABLE RECONFIGURATION

 Real Time task (T1) has priority over Best Effort

task (T2)

 The reconfiguration process is preemptable

 Hardware reconfiguration can be resumed

21

PREEMPTABLE RECONFIGURATION

 Real Time task (T1) has priority over Best Effort

task (T2)

 The reconfiguration process is preemptable

 Hardware reconfiguration can be resumed

22

PREEMPTABLE RECONFIGURATION

 Real Time task (T1) has priority over Best Effort

task (T2)

 The reconfiguration process is preemptable

 Hardware reconfiguration can be resumed

23

With a preemptable interface:

 Performance of both Real Time and Best Effort

tasks are improved.

 The delay experienced by the higher priority task

can be reduced.

 The delay experienced by Best Effort tasks can be

bounded.

BENEFITS

IMPLEMENTATION

24

Preemptable reconfiguration has been realized

on a Xilinx Zynq-7000 platform.

BASE SYSTEM OVERVIEW

25

 Zynq Processing System can trigger a hardware

reconfiguration by sending the bitstream to

configure to the Reconfiguration Controller.

26

Xilinx IP

Cores

CUSTOM RECONFIGURATION CONTROLLER

27

Custom IP

Cores

Xilinx IP

Cores

CUSTOM RECONFIGURATION CONTROLLER

VALID RESUMPTION POINTS

28

 Bitstream contain

configuration data and

commands.

 Commands control the

Xilinx reconfiguration

port (ICAP)

 The ABORT can be

performed anywhere

in the bitstream.

 Resumption point of

reconfiguration must

be carefully calculated.

CUSTOM RECONFIGURATION CONTROLLER

29

CUSTOM RECONFIGURATION CONTROLLER

30

 The hardware layer guarantees worst-case

latency bounds on the commands it processes,

even on the reconfiguration itself when a memory

bandwidth is guaranteed.

PROJECT FLOW

31

PROJECT FLOW

32

PROJECT FLOW

33

MEASURED RESULTS

Low Priority Task High Priority Task

Max.

Observed

Exec. Time

Avg.

Observed

Exec. Time

Max.

Observed

Exec. Time

Avg.

Observed

Exec. Time

No Abort 33.46 ms 32.68 ms 2.45 ms 0.805 ms

Abort 1664.12 ms 33.16 ms 0.811 ms 0.808 ms

Preemption 42.34 ms 32.68 ms 0.810 ms 0.805 ms 34

 High priority task

 Period: from 5ms to

44ms (1ms step)

 Reconfig. time: 0.79ms

 Low priority task

 Period: 50ms

 Reconfig. time: 32.63ms

MEASURED RESULTS

Low Priority Task High Priority Task

Max.

Observed

Exec. Time

Avg.

Observed

Exec. Time

Max.

Observed

Exec. Time

Avg.

Observed

Exec. Time

No Abort 33.46 ms 32.68 ms 2.45 ms 0.805 ms

Abort 1664.12 ms 33.16 ms 0.811 ms 0.808 ms

Preemption 42.34 ms 32.68 ms 0.810 ms 0.805 ms 35

 High priority task

 Period: from 5ms to

44ms (1ms step)

 Reconfig. time: 0.79ms

 Low priority task

 Period: 50ms

 Reconfig. time: 32.63ms

MEASURED RESULTS

36

Starvation Experiment Preemption Experiment

37

CONCLUSIONS

 Design and realization of Preemptable

Reconfiguration with guaranteed latencies

 Custom Reconfiguration Controller

 Software driver, API

 Tools to analyze and manipulate bitstreams

 Base application developed on a RealTime OS

(FreeRTOS) that benefits from having Preemptable

Reconfiguration

38

