

Simulation Framework for Multi-Vehicle Autonomous Systems

Luigi Pannocchi, Mauro Marinoni, Carmelo Di Franco and Giorgio Buttazzo

Scuola Superiore Sant'Anna – Pisa, Italy

Context of the Application

Unmanned Autonomous Vehicles constitute an emerging field in different sectors

Benefits

- They can operate in hazardous environment
- Low cost
- Low maintenance
- Capability of being used in a multi agent framework

Possible Applications

- Surveillance of large areas
- Support for ground personnel
- Geo-Surveys (State of the vegetation, pollution, etc.)
- Search and rescue

Challenges

Requirements

What do we **need** from a development framework?

- Realistic simulation of the vehicles and sensors behavior;
- Support for testing high-level functions of the vehicles;
- Support for multi-agent scenario;
- Good maintainability and interoperability.

Related Works

Often all those aspects are not considered as a whole.

- There are works that implement realistic simulator framework without supporting multi-agent scenario;
- C. Kamali and S. Jain, "Hardware in the loop simulation for a mini uav", ACODS 2016
- Some simulator uses dedicated simulation/visualization tools like flight simulators, losing the capability to model heterogeneous vehicles;
- S. R. Barros dos Santos, S. Givigi, C. L. J. Nascimento, and N. Oliveira, "Modeling of a hardware-in-the-loop simulator for uav autopilot controllers", COBEM 2011
- Often the proposed frameworks are not characterized in terms of timing accuracy;
- O. Parodi, L. Lapierre, and B. Jouvencel, "Hardware-in-the-loop simulators for multi-vehicles scenarios: survey on existing solutions and proposal of a new architecture", IEEE/RSJ 2009

Contributions

- Hardware-in-the-loop simulation environment supporting heterogeneous multi-vehicle configuration;
- Synthetic environment for rapid prototyping of complex testing scenario;
- Timing accuracy and precision, together with a low simulation latency.

Simulation

Realism is important to make the simulation results representative of the real behavior of the system.

Simulation Model

MATLAB

Computing Hardware

Simulation

"Hardware in the Loop"

Autopilot Boards

Support for all the boards that communicate with the *MAVLink* protocol.

Ardupilot 8-bit Microcontroller (16 Mhz)

Pixhawk 32-bit Microcontroller (168 Mhz)

Navio+ 64-bit Microprocessor (quad-core @ 1.2 Ghz)

Ground Station

Solutions involving autonomous vehicles always include ground stations.

The framework can include any ground station implementing the *MAVLink* protocol over UDP.

Synthetic Environment

It provides visual feedback and it is necessary for the testing of developed solutions.

- Design complex testing environments
- Simulate the output of cameras
- Simulate moving objects

Overview

System Implementation

Routing

Managing multiple agents entails exchanging data between different entities.

It is necessary to:

- Performs message exchange considering the priority of different activities;
- Guarantee the precise timing execution of the routines.

Experiments

The system has been characterized in terms of introduced delays and capability to trigger the autopilot board with a given frequency.

Experiments

Results

Latency of the framework response as a function of connected vehicles.

Num. Vehicles	3	10	15
Latency mean value	0.445 ms	0.448 ms	0.450 ms
Latency std	0.089 ms	0.091 ms	0.101 ms

The increase of latency among the case of 3 and 15 vehicles is only **5 µs**

Results

Results with simulation driven synchronization approach:

Precise and accurate triggering of the board

The latency is highly variable

Results

Results with board driven synchronization approach:

The triggering is not precise as in the other approach

The value of the latency is more stable.

Conclusions

- In this work a new structure for a hardware in the loop simulation environment supporting multi-vehicle configuration has been proposed;
- This solution provides the capability to check the correct execution of the designed algorithms directly on the target control board.
- The carried out tests confirm that it is possible to achieve good timing accuracy and precision also with several connected vehicles.

Future Works

Future extensions of the proposed framework:

- capability of simulating a realistic communication between vehicles (e.g., packet loss, delays)
- implementation of environment sensors in the synthetic environment

END