
CC4CS: A Unifying Statement-Level

Performance Metric for HW/SW

Technologies

V. Stoico1, V. Muttillo1, G. Valente1, L. Pomante1, F. D’Antonio2

1 Università Degli Studi Dell’Aquila – Center of Excellence DEWS, L’Aquila, Italy
vincenzo.stoico@student.univaq.it, vittoriano.muttillo@graduate.univaq.it,

giacomo.valente@graduate.univaq.it, luigi.pomante@univaq.it
2 Thales Alenia Space, Via Campo di Pile, L’Aquila, Italy
fausto.dantonio@gmail.com

Italian Workshop on Embedded Systems (IWES 2017)
Work in Progress Session

1

Introduction: HW/SW Co-Design

 The adopted design methodology is of critical importance during the development of an

embedded system.

 Working on a higher level of abstraction is crucial to evaluate alternatives and make better

architectural choices.

 A Co – Design strategy is useful to improve design quality, design cycle time, and cost.

Classic Design

HW

SW

Co – Design

HW SW HW SW
2

Introduction: MIPS

 Early performance estimation is a fundamental step.

 MIPS (Million Instructions Per Seconds) is one of the most common metric for performance

analysis. [1]

 Useful for comparing two microprocessors with the same ISA (Instruction Set Architecture) but

it is pointless to compare ones that have different Instruction Set .

 Problem: most of the performance metrics are too bonded to low level details.

3

Introduction: CC4CS

 Possible Solution: Analyze the meaningfulness of a metric related to C programming

language statements suitable both for SW and HW implementations

 For this the metric targets also HW/SW co-design

 CC4CS (Clock Cycles for C Statements) is the ratio between the number of clock cycles

required by the processor to run an application on the number of executed C statements.

 A framework that helps to calculate this metric has been realized.

CC4CS = Number of Clock Cycles

Executed C Statements

How to calculate numerator and

denominator?

4

Validation: Framework

 From the definition of the metric has been outlined the working process of the

framework.

CC4CS = Number of Clock Cycles

Executed C Statements

Execution of the program

on the processor

Profiling of the program

ESL Synthesis

(HW)

ISS (SW)

5

Framework: 8051 Case Study

 In order to perform a very first analysis, an instance of the framework has been implemented
using the original Intel 8051 microcontroller as first target.

 The original 8051 core is a 8-bit CISC CPU one, has 128 byte of Internal RAM 64K of internal ROM

 Without cache and external memory it is a good starting point since there are limited degree of freedom for the
compiler.

Framework: 8051 Case Study

Input Generator

Compilation and Execution on

the host architecture (x86)

Profiling of the program

Compilation on the 8051

Execution of the program

through an ISS

6

Framework: Input Generation

 Is based on a module that automatically generates constrained random inputs for a given

function.

 For each parameter, the user is asked to insert a range for meaningful values (min, max)

and the number of values to be randomly generated.

 In case of functions that requires more than one variable, the Cartesian Product of

generated values is provided.

 For each combination a header file is created that contains the values of a single

combination.

7

Framework: Profiling on x86

 The program is compiled using GCC [4]:

gcc program.c -Iincludes/ -Iincludes/values/ -fprofile-arcs -ftest-coverage -o program.exe

 From the compilation two files are created: program.exe and program.gcno.

 The executable is launched and program.gcda is created.

 The profiler GCOV [3] is executed

GCC
GCOV

values.h

program.c
program.gcno

program.exe program.gcda

program.c.gcda

8

Framework: Profiling Results

3: 46: if(a[i] > a[i+1])

-: 47: {

2: 48: swap(i,i+1);

2: 49: is_sorted = 0;

2: 50: currentSwap = i;

-: 51: }

9

Framework: Simulation on 8051

 The program is compiled on x86 with SDCC [5]:

sdcc program.c -Iincludes/ -Iincludes/values/ --mmcs51 --iram-size 128

 A file .ihx is created from the compilation. 8051sim needs a .hex file to perform the

simulation, so a conversion is done through packihx command:

packihx program.ihx > program.hex

 At the end, the ISS is launched with the .hex and a text file where will be stored the

statistics of the simulation:

8051sim program.hex program_simReport.txt

values.h

program.c

SDCC 8051sim

program.hex program_simReport.txt
10

Analysis: 8051 results

 To analize CC4CS has been created a benchmark composed by 10 well-known
algorithms.

 The metric has been evaluated with respect to 10.000 input files per function.

 Different data types has been considered (int8, int16, int32, and float).

 The following table shows the statistics calculated using the 8051:

Method Min Max AMa SDb 90c 95d

Int8 58 410 117,8 47,4 170 176

Int16 80 453 161,4 67,5 265 297

Int32 104 760 227,9 88,7 354 400

Float 4 1301 537,7 267,6 969 1173

aAM: Arithmetic Mean, bSD: Standard Deviation, c90: 90h percentile, d95: 95h percentile 11

Framework: SparcV8 Leon3 Case Study

 In order to analyze a different microprocessor, has been implemented an instance of the

framework using Leon3 as target microprocessor.

 Leon3 is a 32 bit synthesizable soft-processor that is compatible with SPARC V8 architecture based

on a Harvard Architecture, has two different caches (one for instructions and one to store the

data).

 Cobham Gaisler free offers the evaluation version of TSIM that is an ISS for this

microprocessor. This version has been used to perform the software simulation in our case

study.

 The evaluation version of TSIM/LEON3 implements 2*4 KiB caches (not removable), RAM size of

4096 KiB and a ROM of 2048 KiB.

12

Framework: Simulation on Leon3

 The program is cross-compiled with BCC (Bare-C Cross Compiler)[6]:

 sparc-elf-gcc program.c -Iincludes/ -Iincludes/values/ -o0 –o program_sparc

 The executable program_sparc has been created.

 TSIM is lauched:

 TSIM program_sparc –c tsim_cmd > program_TsimReport.txt

values.h

program.c

BCC TSIM

program_sparc

tsim_cmd

program_TsimReport.txt

13

Analysis: Leon3 results

Method Min Max AMa SDb 90c 95d

Int8 11 2197 193 304 536 721

Int16 12 2194 291,9 401,5 644 1322

Int32 23 2194 437,1 512,0 1047 2053

Float 28 2200 481,7 516,9 1326 2058

 In the table are reported the statistics calculated using the Leon3:

aAM: Arithmetic Mean, bSD: Standard Deviation, c90: 90h percentile, d95: 95h percentile

14

Framework: CC4CS in HW Domain

 In the work “A Survey and Evaluation of FPGA High-Level Synthesis Tools” were analyzed

three academic (DWARV, Leg-Up, Bambu) HLS tools and a commercial one.

 Functions taken from CHStone benchmark Suite and a part from DWARV and BAMBU has

been used to evaluate the tools. For each function there is a built-in input.

 This work provides, for each function, the number of clock cycles required during the

execution with Altera Stratix V and Xilinx Virtex-7 done with these tools.

 They used the following default target frequencies: 250 MHz for BAMBU, 150 MHz for

DWARV, and 200 MHz for LEGUP. For the commercial tool, they decided to use a default

frequency of 400 MHz.

 Its easy to obtain the CC4CS doing a profiling of the functions to get the number of

executed C statements and next calculate the ratio.

15

Framework: CC4CS in HW Domain

 Two sets of experiments to evaluate the compilers has been done.

 In the first experiment, they executed each tool using all of its default settings, which they

refer to as standard-optimization.

 In the second experiment, they manually optimized the programs and constraints for the

specific tools (by using compiler flags and code annotations to enable various

optimizations) to generate performance-optimized implementations.

 In the following tables are shown statistics calculated on the sample obtained by

computing CC4CS for each function.

16

Analysis: CC4CS in HW Domain

Method Min Max AMa GMb

Commercial 0,1173 4,0064 1,137464 0,75815

Bambu 0,0148 7,357 1,179243 0,46834

DWARV 0,0177 4,4854 1,253125 0,65008

LegUp 0,0007 7,404 1,339010 0,48307

 Results in standard-optimization case:

aAM: Arithmetic Mean, bGM: Geometric Mean

17

Analysis: CC4CS in HW Domain

Method Min Max AMa GMb

Commercial 0,1639 4,0064 0,85406 0,538482

Bambu 0,0148 3,3233 0,69188 0,334336

DWARV 0,0142 6,6672 1,6322 0,639132

LegUp 0,0007 1,5473 0,535986 0,281288

 Results in performance-optimized case:

aAM: Arithmetic Mean, bGM: Geometric Mean

18

Analysis

 So, given a trace of execution, thanks to CC4CS it is possible to immediately estimate how

much time will require 8051 (and other processors for which the metric has been already

evaluated) to execute it

 e. g. Given a function using only int8 and a specific input, and supposing that by means of a

host-based profiling the number of executed C statements are 200, according to the 95h

percentile, it is possible to estimate that 8051 will require form 58*200 to 176*200 clock cycles

With a 20 Mhz clock it is an interval between 0.58 ms and 1.76 ms

 It is worth noting that estimation errors have to be still analyzed in details.

 But it is also worth noting that, having CC4CS for several processors, a comparison of

estimated execution times is straightforward since it is based only on the trace provided by

a host-based profiling.

 This is the ultimate goal and it would be still more powerful considering also the oppotunity to

directly compare HLS-based HW implementations. 19

Conclusion and Future Works

 The metric seems to be good enough to allow reasoning about the suitability of a
processor with respect to given timing constraints and a comparison among processors

 Estimation errors have to be still analyzed in details.

 A more relevant testbech (maybe someone used internationally for similar purposes)
should be adopted

 Some other analysis and considerations related to the HW characteristics of the processors
and compiler optimization have to be done.

 Evaluate CC4CS also for C functions directly implemented in HW by means of High Level
Synthesis techniques.

 This work avoids reasoning about assembly code related to C statements so it is possible to use
CC4CS for HLS

20

References

1. D.J. Lilja, Measuring Computer Performance, A Practitioner’s Guide, Cambridge University

Press, New York, USA, 2000.

2. Dalton Project: 8051 microcontroller, University of California, http://.ann.ece.ufl.edu/i8051/ ,

Accessed 26 April 2017.

3. GCOV Profiler , https://gcc.gnu.org/onlinedocs/gcc/Gcov.html, Accessed 26 April 2017.

4. GCC GNU Compiler Collection, https://gcc.gnu.org/onlinedocs/gcc, Accessed 26 April

2017.

5. SDCC, http://sdcc.sourceforge.net/doc/sdccman.pdf, Accessed 26 April 2017.

6. BCC, http://www.gaisler.com/doc/bcc.pdf, Accessed 26 April 2017.

7. A Survey and Evaluation of FPGA High-Level Synthesis Tools, https://panda.dei.polimi.it/wp-

content/papercite-data/pdf/TCADHLSEVAL2016.pdf, Accessed 5 September 2017.
21

http://.ann.ece.ufl.edu/i8051/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc
http://sdcc.sourceforge.net/doc/sdccman.pdf
http://www.gaisler.com/doc/bcc.pdf
https://panda.dei.polimi.it/wp-content/papercite-data/pdf/TCADHLSEVAL2016.pdf

THANKS!

Any questions?

22

