
HEPSYCODE-RTMC: a Real-Time and
Mixed Criticality Extensions for a
System-Level HWSW Co-Design

Methodology

2st Italian Workshop on
Embedded Systems (IWES 2017)

University of L’Aquila
Center of Excellence DEWS

Department of Information Engineering, Computer Science
and Mathematics DISIM

Author:

Vittoriano Muttillo, Vincenzo Stoico, Daniele Ciambrone, Giacomo Valente, Luigi Pomante
vittoriano.muttillo@graduate.univaqit, vincenzo.stoico@student.univaq.it, daniele.ciambrone@student.univaq.it

giacomo.valente@graduate.univaq.it, luigi.pomante@univaq.it

Summary

1. Introduction

2. Mixed-Criticality Scenario

3. Mixed-Criticality Classification

5. ESL Reference Methodology

6. HepsyCode-RTMC

7. Conclusion and Future Works

2nd Italian Workshop on Embedded Systems, 08-09-2017

1.
Introduction

“Brief
Introduction to
Embedded and

Mixed Criticality
Systems”

Mixed-Criticality Embedded Systems

 HW/SW co-design methodologies are of
renovated relevance

 A growing trend in embedded systems domain is
the development of mixed-criticality systems
where multiple embedded applications with
different levels of criticality are executed on a
shared hardware platform (i.e. Mixed-Criticality
Embedded Systems)

▸

 The growing complexity of embedded digital systems based on modern System-on-
Chip (SoC) adopting explicit heterogeneous parallel architectures has radically
changed the common design methodologies.

2nd Italian Workshop on Embedded Systems, 08-09-2017

Goals
 This work focus on a Framework (and related tool) for modeling, analysis and validation of mixed

critical systems, through the exploitation of an existing "Model-Based Electronic System Level (ESL)
HW/SW Co-Design" methodology (called Hepsycode), improved consider both real-time (RT) and
mixed-criticality (MC) requirements

www.hepsycode.com

2nd Italian Workshop on Embedded Systems, 08-09-2017

2.
Mixed-Criticality
Scenario

“Criticality is a
designation of the
level of assurance

against failure
needed for a system

component”

MCS State-Of-The-Art Model
 Almost 200 papers treating of the scheduling of MCS have been referenced in Burns and Davis*

paper, and tens of related papers are still published every year. Most of the works about MCS
published by the real-time scheduling research community are based on a model proposed by
Vestal* paper.

 This model assumes that the system has several modes of execution, say modes {1, 2, … , L}. The
application system is a set of real-time tasks, where each task τi is characterized by a period Ti and
a deadline Di (as in the usual real-time task model), an assurance level li and a set of worst-case
computational estimates {𝑪𝒊,𝟏, 𝑪𝒊,𝟐, ... , 𝑪𝒊,𝒍𝒊

)}, under the assumption that 𝑪𝒊,𝟏 ≤ 𝑪𝒊,𝟐 ≤ ... ≤ 𝑪𝒊,𝒍𝒊

 The different WCET estimates are meant to model estimations of the WCET at different assurance
levels. The worst time observed during tests of normal operational scenarios might be used as 𝑪𝒊,𝟏
whereas at each higher assurance level the subsequent estimates {𝑪𝒊,𝟐 , ... , 𝑪𝒊,𝒍𝒊

} are assumed to
be obtained by more conservative WCET analysis techniques.

* Burns, A, Davis, R.I.: "Mixed Criticality Systems - A Review“, University of York, 4 March 2016.
** S. Vestal, "Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of Execution Time Assurance," Real-Time
Systems Symposium (RTSS) 28th IEEE International on, Tucson, AZ, 2007, pp. 239-243.

 Most safety standards use the concept of an integrity level, which is assigned to a system
or a function. This level will be based on an initial analysis of the consequences of software
going wrong. Both standards have clear guidance on how to identify integrity level.

 DO-178C has Software Development Assurance Level (DAL), which are assigned based on the
outcome of "anomalous behavior" of a software component – Level A for "Catastrophic Outcome",
Level E for "No Safety Effect".

 ISO26262 has ASIL (Automotive Safety Integrity Level), based on the exposure to issues affecting
the controllability of the vehicle. ASILs range from D for the highest severity/most probable
exposure, and A as the least.

Integrity Level

2nd Italian Workshop on Embedded Systems, 08-09-2017

 GENERAL (IEC-61508) based on SIL (Safety Integrity Level): Functional safety standards
(of electrical, electronic, and programmable electronic)

 AUTOMOTIVE (ISO26262) based on ASIL (Automotive Safety Integrity Level) (Road vehicles - Functional safety)
 NUCLEAR POWER (IEC 60880-2)
 MEDICAL ELECTRIC (IEC 60601-1)
 PROCESS INDUSTRIES (IEC 61511)
 RAILWAY (CENELEC EN 5O126/128/129])
 MACHINERY (IEC 62061)

 AVIONIC based on DAL (Development Assurance Level) related to ARP4761 and ARP4754
 DO-178B (Software Considerations in Airborne Systems and Equipment Certification)
 DO-178C (Software Considerations in Airborne Systems and Equipment Certification, replace DO-178B)
 DO-254 (Airborne - Design), similar to DO-178B, but for hardware
 DO-160F (Airborne - Test)

 MEDICAL DEVICE
 FDA-21 CFR
 IEC-62304

Safety Assurance Standards

3.
Mixed-Criticality
Classification

“A major industrial
challenge arises from the
need to face cost efficient

integration of different
applications with

different levels of safety
and security on a single

computing platform in an
open context”

MCS Classification
Separation technique:
 SW separation: scheduling policy, partitioning with HVP, NoC
 HW separation: one task per core, one task on HW ad hoc

(DSP, FPGA), spatial partitioning with HVP, NoC

 HW:
 Temporal isolation: Scheduling HW
 Spatial isolation: separated Task on dedicated components

 Single processor:
 Temporal isolation: Scheduling policy with SO, RTOS, or HVP
 Spatial isolation : MMU, MPU, HVP Partitioning

 Multi-processor (MIMD)
 Architecture: shared memory systems, UMA (SMP),

NUMA, distributed systems, NoC
 Temporal isolation : Scheduling policy con SO, RTOS, or HVP
 Spatial isolation : MMU, MPU, HVP partitioning

Tecnologies:
 HW: DSP, FPGA, HW ad hoc, Processor
 SW: OS, RTOS, HVP, Bare-metal
 PROCESSORI: LEON3, ARM, MICROBLAZE
 HVP: PikeOS, Xtratum, Xen
 RTOS: eCos, RTEMS, FreeRTOS, Threadx, VxWorks, Erica
 OS: Linux

Separation
Technique

HW Single core Multi-core

Spatial
0-level scheduling

[10]

0-level scheduling
[11][16]

0-level scheduling
[15][16]

1-level scheduling
[2][5][10][13][16]

1-level scheduling
[4][9][15][16]

2-level scheduling
[6][11]

2-level scheduling
[3][4][6][7] [8]

[9][14]

Temporal
0-level scheduling

[10]

0-level scheduling
[11][16]

0-level scheduling
[15][16]

1-level scheduling
[1][2][10][13] [16]

1-level scheduling
[4][9][12][15][16]

2-level scheduling
[6][11]

2-level scheduling
[1][4][6][7] [8]

[9][14]

Multi-core Implementation
EMC2 WP2 - 4-Copter Demonstrator [16]

Safety critical tasks: All tasks which are needed for a stable and safety
flight of the multi-rotor system, e.g. the flight and navigation controllers.
An error, like missing a deadline, will cause a crash-landing!

Mission critical tasks: All tasks which are not needed for a safe flight,
but may also have defined deadlines, e.g. tasks which are belonging to
the payload processing, like video processing.

Uncritical tasks: All tasks which are not needed either for a safe flight or
a correct execution of the mission task, e.g. control of the debug LEDs or
transmission of telemetry data.

 Flight and Position control

 Execution on Soft-Cores in FPGA
 Bare metal, no OS support
 Interfaces for I2C, PPM and GPIO used

 Object tracking

 Execution on Dual ARM-Core
 Needs Linux as OS
 Multimedia Libraries
 Needs interfaces USB und Network

Xilinx Zynq 7020:

 ARM dual-core
Cortex-A9 (866MHz)

 Artix-7 FPGA (85k
Logik Zellen)

Multi-core Implementation
Univaq EMC2 UC - Satellite Demo Platform (Hardware and Software) [8]

TARGET

MULTICORE

PROCESSIN

G PLATFORM

PERIPHERAL

DEVICE 2
PERIPHERAL

DEVICE 1

TEST

CONSOLE

JTAG

SERIAL

ETHERNET

SPACEWIRE

Application Stack:

(Telemetry, file transfers)

Test Software

(Test input, analysis and benchmarking)

GR-CPCI-LEON4-N2X: designed for evaluation of the
Cobham Gaisler LEON4 Next Generation
Microprocessor (NGMP) functional prototype device.

Processor: Quad-Core 32-bit LEON4 SPARC V8
processor with MMU, IOMMU

F. Federici, V. Muttillo, L. Pomante, G. Valente, D. Andreetti, D. Pascucci,: “Implementing mixed-critical applications on next generation
multicore aerospace platforms”, CPS Week 2016, EMC² Summit, Vienna, Austria

 Migrate a typical

aerospace application

over a modern

multicore platform

 Benchmarking

hypervisors

 Compare different

virtualization solutions

4.
ESL
Methodology

“You will never strike
oil by drilling through

the map! -
Solomon Wolf Golomb”

 In the context of real-time
embedded systems design, this
work starts from a specific
methodology (internally called
HEPSYCODE: HW/SW CO-
DEsign of HEterogeneous
Parallel Dedicated SYstems)
[www.hepsycode.com], based
on an existing System-Level
HW/SW Co-Design
methodology, and introduces
the possibility to specify real-
time requirements in the set of
non-functional ones (the new
framework is so called
HEPSYCODE-RT).

ESL Methodology

2nd Italian Workshop on Embedded Systems, 08-09-2017

System

Behaviour

Model

Functional

Simulation

Reference

Inputs

Co-Analysis

Co-Estimation

- Affinity

- Timing

- Size

- Concurrency

- Load

- Bandwidth

HW/SW Partitioning,

Mapping and

Architecture Definition

Timing

Co-Simulation

Design Space Exploration

Algorithm-Level

Flow

System-Level Flow

Heterogeneous Parallel Dedicated System

Technologies Library

-Processing Units

-Memories

-Interconnections

NF Constraints

BB

System Behaviour Specification

 Input

Reference Co-Design Flow

2nd Italian Workshop on Embedded Systems, 08-09-2017

System

Behaviour

Model

Functional

Simulation

Reference

Inputs

Co-Analysis

Co-Estimation

- Affinity

- Timing

- Size

- Concurrency

- Load

- Bandwidth

HW/SW Partitioning,

Mapping and

Architecture Definition

Timing

Co-Simulation

Design Space Exploration

System-Level Flow

Technologies Library

-Processing Units

-Memories

-Interconnections

NF Constraints

System Behaviour Specification

BB

 The system behavior modeling language introduced in HEPSYCODE-RT, named HML (HEPSY
Modeling Language), is based on the well-known Communicating Sequential Processes (CSP)
Model of Computation (MoC)

 By means of HML it is possible to specify the System Behavior Model (SBM)

SBM = {PS, CH} is a CSP-based executable/simulatable model of the system behaviour based on a
Concurrent Processes MoC that explicitly defines also a model of communication) among processes (PS)
using unidirectional point-to-point blocking channels (CH) for data exchange (i.e. CSP channels).

PS = {ps1, ps2, .. , psn} is a set of concurrent processes that communicate each others exclusively by means
of channels and use only local variables. Each process is described by means of a sequence of
statements (an init section followed by a neverending loop) by using a suitable modeling language. Each
process can have a priority p: 1 (lower) to 100 (higher) imposed by the designer

CH = {ch1, ch2, .. , chn} is a set of channels where each channel is characterized by source and destination
processes, and some details (i.e. size, type) about transferred data. Each channel can have also a priority
p: 1 (lower) to 100 (higher) imposed by the designer

Modelling Language

2nd Italian Workshop on Embedded Systems, 08-09-2017

 An example of a possible SBM in shown in Figure, where the process PS = {ps1, .. , ps4} exchange data
using channel CH = {ch1, .. , ch7}

System Behaviour

2nd Italian Workshop on Embedded Systems, 08-09-2017

 Non–Functional Constraints
 Timing Constraints (TC)

 Time-To-Completion Constraint (TTC)
 Real-Time Constraints (RTC)

 Time-To-Reaction Constraint (TTR)
 Mixed-Criticality Constraints (MCC)

 Constraint in the DSE cost function

 Architectural Constraints
 Target Form Factor (TFF)

• On-chip: ASIC, FPGA, SO(P)C
• On-Board: SOB (PCB)

 Target Template Architecture (TTA) (related to type of available Basic Blocks BB)

 Scheduling Directives (SD) - Available scheduling policies for SW processors:
 Round Robin (RR), Round Robin (no overhead), Round Robin (Time Stretching)
 Fixed Priority (FP)
 Hypervisor (HVP - WIP)

Constraints

2nd Italian Workshop on Embedded Systems, 08-09-2017

 Time-to-Completion (TTC): time available to complete the SBM execution from the first input
trigger to complete output generation. This constrain should be satisfied by each (ii, oi) couple.

 Time-to-Reaction (TTR): real-time constraints related to the time available for the execution of
leaf CSP processes (i.e. the time available to execute the statements inside the input/output pair
that delimits the never-ending loop of a CSP process). This constrain should be satisfied by each
input and output

Timing Constrains

2nd Italian Workshop on Embedded Systems, 08-09-2017

 The target HW architectures are composed of different basic HW
components. This components are collected into a Technologies
Library (TL). TL can be considered a generic “database” that
provides the characterization of all the available technologies used
in industry and academic world.

 TL = {PU, MU, CU}, where PU = {pu1, pu2, .. , pup} is a set of Processing
Units, MU = {mu1, mu2, .. , mum} is a set of Memory Units and CU =
{cu1, cu2, .. , cuc} is a set of Communication Units

 Blocks built by the designer starting from the TL are called Basic
Blocks (BB)

 They are the basic components available during DSE step to
automatically define the HW architecture. A generic BB is
composed of a set of Processing Units (PU), a set of Memories
Units (MU), an Internal Interconnection (IIL) and a Communication
Unit (CU)

Target Architecture

2nd Italian Workshop on Embedded Systems, 08-09-2017

CU

LMPU

II

PU
PU

LM
LM

Functional Simulation

2nd Italian Workshop on Embedded Systems, 08-09-2017

System

Behaviour

Model

Functional

Simulation

Reference

Inputs

Co-Analysis

Co-Estimation

- Affinity

- Timing

- Size

- Concurrency

- Load

- Bandwidth

HW/SW Partitioning,

Mapping and

Architecture Definition

Timing

Co-Simulation

Design Space Exploration

System-Level Flow

Technologies Library

-Processing Units

-Memories

-Interconnections

NF Constraints

System Behaviour Specification

BB

Co-Analysis & Co-Estimation (1)

2nd Italian Workshop on Embedded Systems, 08-09-2017

System

Behaviour

Model

Functional

Simulation

Reference

Inputs

Co-Analysis

Co-Estimation

- Affinity

- Timing

- Size

- Concurrency

- Load

- Bandwidth

HW/SW Partitioning,

Mapping and

Architecture Definition

Timing

Co-Simulation

Design Space Exploration

System-Level Flow

Technologies Library

-Processing Units

-Memories

-Interconnections

Timing Constraints

Architectural

Constraints

BB

Co-Analysis & Co-Estimation (2)

2nd Italian Workshop on Embedded Systems, 08-09-2017

Co-Estimation

STATIC

-Timing, Size

DYNAMIC

- Load, Bandwidth

Co-Analysis

STATIC

- Affinity

DYNAMIC

- Concurrency

Technologies Library

-Processors

-Memories

-Interconnections

System

Behaviour

Model
Reference

Inputs

Timing

Constraints

Architectural

Constraints

BB

 Load

L is the Load (i.e. the processor utilization percentage) that each process would impose
to each not-SPP processor to satisfy imposed timing constraints

2nd Italian Workshop on Embedded Systems, 08-09-2017

Co-Estimation

- Timing
Co-Estimation

(dynamic)

Timing Simulation

- Load

System

Behaviour

Model

Timing

Constraints
Reference

Inputs

Design Space Exploration (1)

2nd Italian Workshop on Embedded Systems, 08-09-2017

System

Behaviour

Model

Functional

Simulation

Reference

Inputs

Co-Analysis

Co-Estimation

- Affinity

- Timing

- Size

- Concurrency

- Load

- Bandwidth

HW/SW Partitioning,

Mapping and

Architecture Definition

Timing

Co-Simulation

Design Space Exploration

System-Level Flow

Technologies Library

-Processing Units

-Memories

-Interconnections

Timing Constraints

Architectural

Constraints

BB

Design Space Exploration (2)
 The goal is to extend the existing HW/SW co-design methodology for

parallel embedded systems to consider also mixed-criticality applications.

 In order to support incremental DSE for mixed-criticality, UNIVAQ is
investigating two iterative activities:
 First step: starts from system behavior and timing constraints, provide a suitable

architecture/mapping item
 Second step: starts from an architecture/mapping item and some mixed-criticality

constraints in order to suggest needed modifications to the HW/SW architecture or to the
mapping

 The final mixed-critical architecture/mapping item is early validated by
means of a system-level HW/SW Timing Co-Simulation.

2nd Italian Workshop on Embedded Systems, 08-09-2017

Design Space Exploration (2)

 Main issues:

 Extension of the first-step of the DSE methodology for a better management of timing
requirements in order to consider also classical RT ones

 Analysis of existing HW/SW technologies to support mixed-criticality management (with
focus on hypervisors technologies) to be exploited in the second-step of the DSE methodology

 Extension of the system-level co-simulation approach to consider also two-levels scheduling
policies typically introduced by hypervisors technologies

2nd Italian Workshop on Embedded Systems, 08-09-2017

Co-Simulator

2nd Italian Workshop on Embedded Systems, 08-09-2017

Memory

Co-Simulator (2)

2nd Italian Workshop on Embedded Systems, 08-09-2017

waiting_time=IPC*ceil((float)width/pSystemManager>getLink().physical_width)

*pSystemManager->getLink() .tcomm +pSystemManager->getLink().tacomm;

Full

handshake

methods

Reference Application

2nd Italian Workshop on Embedded Systems, 08-09-2017

Processors

Intel MPU 8051 with

frequency 20 MHz

Microchip DSPIC or PIC24

with frequency 20 MHz

Xilinx Spartan3AN

with frequency 50 MHz

ID 1 ID 2

ID 3

ID 4

ID 2

ID 3 ID 4

ID 5

ID 6 ID 7

ID 8

ID 9

http://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=6iUKFAOiOFLawM&tbnid=yEjZp51UL4qiMM:&ved=0CAUQjRw&url=http://www.dreamstime.com/stock-photo-computer-chip-image10621720&ei=P6_QU7bLD8GxPJuigIAB&bvm=bv.71667212,d.ZGU&psig=AFQjCNGfBzg0qsJ7_tyKSPOwfoTIiw-d9Q&ust=1406271649758398
http://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=6iUKFAOiOFLawM&tbnid=yEjZp51UL4qiMM:&ved=0CAUQjRw&url=http://www.dreamstime.com/stock-photo-computer-chip-image10621720&ei=P6_QU7bLD8GxPJuigIAB&bvm=bv.71667212,d.ZGU&psig=AFQjCNGfBzg0qsJ7_tyKSPOwfoTIiw-d9Q&ust=1406271649758398
http://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=P4SIqSQDo1UxeM&tbnid=0Rkz0ZdCxzuzsM:&ved=0CAUQjRw&url=http://www.dreamstime.com/stock-photo-pink-floral-background-your-design-see-my-other-works-portfolio-image37978250&ei=9a_QU-v3AYeEOKGvgPgC&bvm=bv.71667212,d.ZGU&psig=AFQjCNEQdIHHQf5AnKVCP2jdw9Hsx3rc-g&ust=1406271844658994

Preliminary Validation

2nd Italian Workshop on Embedded Systems, 08-09-2017

0

0,05

0,1

0,15

0,2

0,25

0 1 2 5 10

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Wait for Stimuli Generated (ms)

B - 234 (8051 ID1), 567 (8051 ID2), 89 (DSP ID3)

No Overhead Round Robin Fixed Priority

0

0,05

0,1

0,15

0,2

0,25

0 1 2 5 10

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Wait for Stimuli Generated (ms)

A - All processes (8051 ID1)

No Overhead Round Robin Fixed Priority

Preliminary Validation

2nd Italian Workshop on Embedded Systems, 08-09-2017

0

0,05

0,1

0,15

0,2

0,25

0 1 2 5 10

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Wait for Stimuli Generated (ms)

C - 234 (8051 ID1), 67 (Spartan3 ID4), 589 (DSP ID3)

No Overhead Round Robin Fixed Priority

0

0,05

0,1

0,15

0,2

0,25

A-0 B-0 C-0 A-1 B-1 C-1 A-2 B-2 C-2 A-5 B-5 C-5 A-10B-10C-10

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Wait for Stimuli Generated (ms)

Design Space Exploration

No Overhead Round Robin Fixed Priority

5.
HepsyCode-RTMC

“The fundamental
issue with MCS is

how to reconcile
the differing needs of

separation (for
safety) and sharing

(for efficient resource
usage)”

 With respect to the SBM model, it is now possible to identify two class of CSP
processes: classical CSP process and real-time CSP processes

2nd Italian Workshop on Embedded Systems, 08-09-2017

SBM with Real-Time Constrains

 Load
The Load (i.e. processor percentage) Li is the load that each non real-time psi process would impose to each s
software processor to satisfy input timing constrain. Li is estimated by allocating all the n processes to a single-
instance of each s software processor (pui ⊆ {[pu1, .. , pus]} with s ≤ n) and performing simulations while
considering the need to satisfy input constrain

Three parameters has been computed:
 FRTj (Free Running Time) : total application simulation time on processor puj
 ti simulation time for each process psi in a lap on processor puj
 N: number of simulation lap

Starting from this estimated parameters, the load Li is calculated by the equation:
 Li = ti / (FRTj/N)

Designer can impose a timing constraint (TTC) to the system, so that each FRTj is lower than a certain
percentage:
 TTC = xj*FRTj

New load parameter:
 Li = ti / ([xj*FRTj]/N)

2nd Italian Workshop on Embedded Systems, 08-09-2017

Co-Estimation

 Load in RT scenario
The Load Li that each real-time process psi would impose to each s software processor to satisfy input real-time
constrain TTRi is set equal to:

 Li = ti / TTRi

TTRi is the real-time constrain related to the process psj and it is the input real-time constrains related
to the puj processor

In this mode it is possible to consider three different situation:

 Hard real-time process: if ti < TTRi the constrains is fulfilled and it is possible to consider the value
Li as an input to the DSE step

 Soft real-time process: if (TTRi) < ti < (TTRi + δ(t)) then constrains could be considered as a soft real-
time constrains. It is possible to apply the classical method for the DSE step and load analysis or
relaxing the input requirements to match RT constrains.

 Firm real-time process: if do not consider real-time constrains it is possible to apply the classical
method for the DSE step and load analysis

2nd Italian Workshop on Embedded Systems, 08-09-2017

Co-Estimation

L1 = t1 / ([x1*FTR1]/N), L2 = t2 / ([x2*FTR1]/N),
L4 = t4 / ([x4*FTR1]/N)

L3 = t3 / TTR3 (real-time process load)

2nd Italian Workshop on Embedded Systems, 08-09-2017

Case Study

2nd Italian Workshop on Embedded Systems, 08-09-2017

Results

Allocation
FINAL

SIMULATED
TIME (ms)

PS1 (ms) PS2 (ms) PS3 (ms) PS4 (ms) LAPS TTC (ms) TTR (ms) Check
Constraint

All MPU_1 425,6755 20,67015 30,94065 4,22915 20,62915 10 600 10 YES

All MPU_2 545,344375 25,8376875 38,6758125 5,2864375 25,7864375 10 600 10 YES
All MPU_2 545,344375 25,8376875 38,6758125 5,2864375 25,7864375 10 600 5 NO

All FPGA 7,1078 0,352905 0,528255 0,072205 0,352205 10 600 5 YES

1 and 4 on MPU_2, 2 and 3 on MPU_1 473,8755 25,8376875 30,94065 4,22915 25,7864375 10 500 5 YES

1 and 4 MPU_2, 2 and 3 on MPU_1 473,8755 25,8376875 30,94065 4,22915 25,7864375 10 500 4 NO
4 on MPU_2, 1, 2 and 3 on MPU_1 446,338875 20,67015 30,94065 4,22915 25,7864375 10 500 4 NO

1 on MPU_2, 2, 3 and 4 on MPU_1 447,0755 25,8376875 30,94065 4,22915 20,62915 10 500 4 NO

1, 2 and 4 on MPU_2, 3 on MPU_1 525,304 25,8376875 38,6758125 4,22915 25,7864375 10 500 4 NO
1 and 4 on MPU_2, 2 on MPU_1, 3 on FPGA 449,58505 25,8376875 30,94065 0,072205 25,7864375 10 500 4 YES

6.
Conclusion and
Future Works

“The fundamental
issue with MCS is

how to reconcile
the differing needs of

separation (for
safety) and sharing

(for efficient resource
usage)”

 This talk presents the MC domain, respect to RT model, criticality and safety
requirements and high system-level design methodologies

 An extended ESL Electronic Design Automation (EDA) methodology (and related tools)
that will help designers to develop Mixed-Criticality Embedded Systems has been
discussed

 After defined a CSP to RT model transformation, the next step is to further enhance the
DSE step to suggest to the designer how to manage different criticality levels of
applications, components, and tasks, by means of relevant available technologies (e.g.
hypervisors, physical partitioning, etc.).

 Introduce multiple scheduling levels to simulate Hypervisor behavior

Conclusions and future work

2nd Italian Workshop on Embedded Systems, 08-09-2017

Reference
Main References

L. Pomante, D. Sciuto, F. Salice, W. Fornaciari, C. Brandolese, “Affinity-Driven System Design Exploration for Heterogeneous
Multiprocessor SoC”, IEEE Transactions on Computers, Vol. 55, Iss. 5, May 2006.

L. Pomante, “System-Level Design Space Exploration for Dedicated Heterogeneous Multi-Processor Systems”, IEEE
International Conference on Application-specific Systems, Architectures and Processors, September 2011.

L. Pomante, “HW/SW Co-Design of Dedicated Heterogeneous Parallel Systems: an Extended Design Space Exploration
Approach”. IET Computers & Digital Techniques, Institution of Engineering and Technology, 2013, Vol. 7, Iss. 6, pp. 246–254.

Other Journals

L. Pomante. “System-Level Design Space Exploration for Heterogeneous Parallel Dedicated Systems”, DLINE Journal of
Electronic Systems, 2013, Vol. 3 , Iss. 2

L. Pomante, P. Serri, "SystemC-based HW/SW Co-Design of Heterogeneous Multiprocessor Dedicated Systems", International
Journal of Information Systems, 2014, Vol.1

Books

L. Pomante. “Electronic System-Level HW/SW Co-Design of Heterogeneous Multi-Processor Embedded Systems”, The River
Publishers Series in Circuits and Systems, June 2016.

2nd Italian Workshop on Embedded Systems, 08-09-2017

Reference
Other Conference Papers

L. Pomante, S. Marchesani, P. Serri, “Design Space Exploration for Heterogeneous Multi Multi-Core Processor Dedicated
Systems”. 3th Workshop on Design, Modeling and Evaluation of Cyber Physical Systems (CyPhy'13), Philadelphia, April 2013.

L. Pomante, S. Marchesani, P. Serri, “System-Level Design Space Exploration for Heterogeneous Parallel Dedicated Systems”.
ICMAES'2013 - The International Conference on Machines Applications and Embedded Systems, Computer and Information
Technology (WCCIT), 2013 World Congress on , Sousse (Tunisia), June 2013.

F. Federici, V. Muttillo, L. Pomante, P. Serri, G. Valente, "A Model-Based ESL HW/SW Co-Design Framework for Mixed-Criticality
Systems", EMC² Summit at CPS Week, Vienna, Austria, 11 April 2016

D. Di Pompeo, E. Incerto, V. Muttillo, L. Pomante, G. Valente, "An Efficient Performance-Driven Approach for HW/SW Co-Design",
International Conference on Performance Engineering (ICPE '17), 2017, ACM, New York, NY, USA, 323-326.

Work in Progress Sessions Papers

D. Ciambrone, V. Muttillo, G. Valente, L. Pomante, "HW/SW Co-Simulator for Embedded Heterogeneous Parallel Systems",
Euromicro Conference on Digital Systems Design (DSD) - Work in Progress Session, 2017

V. Stoico, V. Muttillo, G. Valente, L. Pomante, F. D'Antonio, "CC4CS: A Unifying Statement-Level Performance Metric for HW/SW
Technologies", Euromicro Conference on Digital Systems Design (DSD) - Work in Progress Session, 2017

2nd Italian Workshop on Embedded Systems, 08-09-2017

THANKS!

Any questions?

7.
Backup
Papers

FlexPRET is a 32-bit, 5-stage, fine-
grained multithreaded processor with
software-controlled, flexible thread
scheduling. It uses a classical RISC 5-
stage pipeline: instruction fetch (F),
decode (D), execute (E), memory access
(M), and writeback (W). Predict not-
taken branching and software-
controlled local memories are used for
fine-grained predictability. It also
implements the RISC-V ISA [20], an ISA
designed to support computer
architecture research, that we extended
to include timing instructions.

FlexPRET is implemented in Chisel [26],
a hardware construction language that
generates both Verilog code and a cycle-
accurate C++-based simulator.

Hardware Implementation
FlexPRET: Processor Platform for Mixed-Criticality Systems [11]

A mixed-criticality avionics case study FlexPRET-8T (8 physical number of
threads available) executing a mixed-
criticality avionics case study

 The OKL4 Microvisor is an advanced secure type-1
hypervisor developed by General Dynamics C4
Systems and supports all ARM processors with MMU
hardware

 Supporting virtualization with the lowest possible overhead, the
microvisor’s abstractions are designed with:

 the microvisor’s execution abstraction is that of a virtual
machine with one or more virtual CPUs (vCPUs), on which the
guest OS can schedule activities;

 the memory abstraction is that of a virtual MMU (vMMU), which
the guest OS uses to map virtual to (guest) physical memory;

 the I/O abstraction consists of memory-mapped virtual device
registers and virtual interrupts (vIRQs);

 communication is abstracted as vIRQs (for synchronisation) and
channels. The latter are bi-directional FIFOs with a fixed
(configurable per channel) buffer allocated in user space (run
also TCP/IP on a channel).

Single-core Implementation
OKL4 Microvisor [14]

Multi-core Implementation
Multi-IMA Partitioning [6]

Given a set of:

 Single-core IMA
systems

 Partitions
 Multi-core system

All partitions from a single
core must be scheduled on
the same core of the multi-
core system (they can be
rescheduled within the
same core)

Multi-IMA partition scheduling
optimization where a partition
consists of two logical regions:

 solo- partition (in avionics
systems performing I/O
transactions)

 execution-partition

Partition can be scheduled on
a core if it doesn’t interfere
with the solo-partitions of
other partitions and doesn’t
overlap with other partitions
assigned to the same core.
Each partition is strictly
periodic and non-preemptive.
This supports temporal and
spatial isolation among
partitions.

Many-core Implementation
T-CREST Multi-core Architecture [15]

 The T-CREST platform consisting of
Patmos processor nodes that are
connected via an on-chip network
for message passing
communication and a memory
tree to a memory controller for
shared memory access

 Data transfer in the T-CREST core-
to-core message passing NoC.

 Mapping of ARINC 653 partitions
to cores onto the T-CREST
platform.

Many-core Implementation
University of L’Aquila CRAFTERS Case Study

 Hardware mechanisms to support
isolation in a Network-on-Chip

 Isolation of different application classes on
NoC architectures

 Hardware mechanisms supporting isolation
to be introduced into existing network
interfaces

 Support for the execution of multiple
applications with different criticality levels

 Strategy: message exchange supervision

R1

T7(c1),
TM
NI4

R4

T1(c1),
T2(c2)

NI1

R2

T5(c1),
T6(c2)

NI3

R3

T3(c1),
T4(c1)

NI2

L. Pomante, C. Tieri, F. Federici, M. Colizza, M. Faccio, R. Cardinali, B. Iorio. "HW Mechanisms to Support Isolation in Mixed-Criticality NoC".
Euromicro Conference on Digital System Design - WIP Session, Verona, August 2014.

Reference
[1] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance,” in Proc. Int’l Real-
Time Systems Symp. (RTSS), 2007

[2] A. Gerstinger, H. Kantz, C. Scherrer: ”TAS Control Platform: A Platform for Safety-Critical Railway Applications”, ERCIM NEWS 75, Oct.
2008

[3] D. Muench, O. Isfort, K. Mueller, M. Paulitsch, A. Herkersdorf: "Hardware-Based I/O Virtualization for Mixed Criticality Real-Time
Systems Using PCIe SR-IOV," 2013 IEEE 16th International Conference on Computational Science and Engineering, Sydney, NSW, 2013, pp.
706-713

[4] M. Paulitsch, O. M. Duarte, H. Karray, K. Mueller, D. Muench, J. Nowotsch: "Mixed-Criticality Embedded Systems -- A Balance Ensuring
Partitioning and Performance" Digital System Design (DSD), 2015 Euromicro Conference on, Funchal, 2015, pp. 453-461

[5] M. G. Hill, T. W. Lake: "Non-interference analysis for mixed criticality code in avionics systems," Automated Software Engineering, 2000.
Proceedings ASE 2000. The Fifteenth IEEE International Conference on, Grenoble, France, 2000, pp. 257-260.

[6] J. E. Kim, M. K. Yoon, S. Im, R. Bradford, L. Sha: “Optimized Scheduling of Multi-IMA Partitions with Exclusive Region for Synchronized
Real-Time Multi-Core System” in Proceedings of the 16th ACM/IEEE Design, Automation, and Test in Europe (DATE 2013), Mar. 2013.

[7] J. E. Kim, M. K. Yoon, R. Bradford, L. Sha, "Integrated Modular Avionics (IMA) Partition Scheduling with Conflict-Free I/O for Multicore
Avionics Systems," to appear in Proceedings of the 38th IEEE Computer Software and Application Conference (COMPSAC 2014), Jul. 2014.

[8] F. Federici, V. Muttillo, L. Pomante, G. Valente, D. Andreetti, D. Pascucci: “Implementing mixed-critical applications on next generation
multicore aerospace platforms”, CPS Week 2016, EMC² Summit, Vienna, Austria

[9] B. Huber, C. El Salloum, and R. Obermaisser. A resource management framework for mixed-criticality embedded systems. In 34th IEEE
IECON, pages 2425–2431, 2008

Reference
[10] R. Pellizzoni, P. Meredith, M. Y. Nam, M. Sun, M. Caccamo, L. Sha,: “Handling Mixed-criticality in SoC-based Real-time Embedded
Systems”, Proceedings of the Seventh ACM International Conference on Embedded Software, 2009

[11] M. Zimmer, D. Broman, C. Shaver and E. A. Lee, "FlexPRET: A processor platform for mixed-criticality systems" 2014 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS), Berlin, 2014, pp. 101-110.

[12] M. Mollison, J. Erickson, J. Anderson, S. Baruah, J. Scoredos: “Mixed-criticality real-time scheduling for multicore systems,” in Proc. of
the 10th IEEE International Conference on Computer and Information Technology (CIT), 2010, pp. 1864–1871.

[13] K. Goossens, A. Azevedo, K. Chandrasekar, M. D. Gomony, S. Goossens, M. Koedam, Y. Li, D. Mirzoyan, A. Molnos, A. B. Nejad, A. Nelson, S.
Sinha: Virtual execution platforms for mixed-time-criticality systems: the CompSOC architecture and design flow. SIGBED Rev. 10, 3
(October 2013), 23-34.

[14] G. Heiser, B. Leslie: “The OKL4 microvisor: convergence point of microkernels and hypervisors”, In: Proceedings of the first ACM asia-
pacific workshop on Workshop on systems (APSys '10). ACM, New York, NY, USA, 19-24

[15] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso, J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann, S. Hepp,
B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch, W. Puffitsch, P. Puschner, A. Rocha, C. Silva, J. Sparsø, A. Tocchi: “T-CREST: Time-
predictable multi-core architecture for embedded systems, Journal of Systems Architecture”, Volume 61, Issue 9, October 2015, Pages
449-471

[16] W, Weber, A. Hoess, J. van Deventer, F. Oppenheimer, R. Ernst, A. Kostrzewa, P. Dorè, T. Goubier, H. Isakovic, N. Druml, and others: “The
EMC2 Project on Embedded Microcontrollers Technical Progress after Two Years”. Digital System Design (DSD), Euromicro Conference on.
Pp. 524-531

