
Italian Workshop on Embedded Systems – IWES 2017

FRED: A Framework for Supporting

Real-Time Applications on Dynamic

Reconfigurable FPGAs

Marco Pagani, Alessandro Biondi, Mauro Marinoni,

and Giorgio Buttazzo

ReTiS Lab, TeCIP Institute

Scuola superiore Sant’Anna - Pisa

Italian Workshop on Embedded Systems – IWES 2017

Agenda

1 Dynamically Reconfigurable FPGAs

Modern heterogeneous platforms open a new scheduling dimension

The FRED Framework

Predictable FPGA virtualization by means of dynamic partial
reconfiguration for real-time applications

2

Supporting FRED in Linux on Zynq

Enabling predictable FPGA virtualization for Linux

4

Prototype implementation with Zynq
Preliminary overhead and performance evaluation show

encouraging results

3

Italian Workshop on Embedded Systems – IWES 2017

What is a FPGA?

 A field-programmable gate array (FPGA) is an integrated circuit designed to
be configured (by a designer) after manufacturing

 FPGAs contain an array of programmable logic blocks, and a hierarchy of
reconfigurable interconnects that allow to “wire together” the blocks.

from ni.com

Ad-hoc hardware acceleration of specific
functionalities with a consistent speed-up

Performance

Italian Workshop on Embedded Systems – IWES 2017

Dynamic Partial Reconfiguration

 Modern FPGA offers dynamic partial reconfiguration (DPR) capabilities.

 DPR allows reconfiguring a portion of the FPGA at runtime, while the rest of the
device continues to operate.

 DPR opens a new dimension in the resource management problems for such
platforms.

 Likewise multitasking, DPR allows virtualizing the FPGA area by “interleaving”
(at runtime) the configuration of multiple functionalities

Analogy with multitasking

CPU FPGA

Context switch

Tasks Hardware accelerators

DPR
CPU registers FPGA config. memory

SW Programmable logic

Memory

FPGA Area

Analogy with
virtual memory

Italian Workshop on Embedded Systems – IWES 2017

The Payback

 DPR does not come for free!

 Reconfiguration times are ~3 orders of magnitude higher than context
switch times in today’s processors.

 Determines further complications in the resource management problems.
T

h
e

o
re

ti
c
a

l T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Year
2000 2002 2004 2006 2008 2010 2012 2014 2016

100

300

500

700

900

Very promising trend!

Italian Workshop on Embedded Systems – IWES 2017

The FRED Framework

Exploiting dynamic reconfiguration of

FPGAs to support real-time applications

Italian Workshop on Embedded Systems – IWES 2017

System Architecture

 System-on-chip (SoC) that includes:

 One processor;

 One DPR-enabled FPGA fabric;

 DRAM shared memory.

CPU

Cache

FPGA Fabric

DRAM Controller

DRAM

SoC

Italian Workshop on Embedded Systems – IWES 2017

Computational Activities

TASK(myTask)

{

<…>

<prepare input data>

EXECUTE_HW_TASK(myHWtask);

<retrieve output data>

<…>

}

SW-Task

Suspend the execution
until the completion of

the HW-task

CPU FPGA Fabric

SW-Task

FP scheduling non-preemptive exec

HW-Task

periodic/sporadic real-time tasks

HW accelerators implemented as
programmable logic

System-on-Chip

Italian Workshop on Embedded Systems – IWES 2017

SW- and HW-Tasks

 A SW-task using two HW-tasks

 The SW-task has 3 execution regions and self-

suspends when HW-tasks execute

CPU

FPGA

time

HW-task #1 HW-task #2

suspended suspended

Italian Workshop on Embedded Systems – IWES 2017

SW- and HW-Tasks

 Suppose we also want to execute another SW-task, using two

heavy HW-tasks that occupy almost all the FPGA area

FPGA

HW-task #3 HW-task #4

FPGA

HW-task #1 HW-task #2The FPGA area is not enough to
contain all the HW-tasks…

Why don’t we use DPR to support

the execution of both tasks?

Italian Workshop on Embedded Systems – IWES 2017

Reconfiguration Interface

 DPR-enabled FPGAs dispose of a FPGA reconfiguration
interface (FRI) (e.g., PCAP, ICAP on Xilinx platforms).

 In most real-world platforms, the FRI

o can reconfigure an area without affecting
HW-tasks that are executing in other areas;

o is an external device to the processor
(e.g., like a DMA);

o can program at most one slot at a time.

Single resource  Contention

Reconfiguration can be preemptive or non-preemptive

X

Italian Workshop on Embedded Systems – IWES 2017

Slotted Approach

 FPGA area partitioned into partitions, each of them in-turn
partitioned into slots

 HW-Tasks are programmed onto slots of a fixed partition (affinity)

 Partitioning can be done off-line as a function of the taskset

Partition #1
4 slots of 4 logic-blocks

Partition #2
2 slots of 16 logic-blocks

Partition #3
4 slots of 8 logic-blocks

FPGA area

Italian Workshop on Embedded Systems – IWES 2017

Scheduling Infrastructure

HW-task

affinity

partition #1

partition #2

partition #3

FRI

FIFO ordered

Ordered by request time

(ticket-based)

Can be preemptive or
non-preemptive

FPGA area

Italian Workshop on Embedded Systems – IWES 2017

Response Time Analysis

 In Biondi et al. [RTSS’16] we derived upper-bounds on the delay incurred by
SW-tasks when requesting the execution of HW-tasks

 delay = slot contention + FRI contention

 Once computed the delay bound, we can transform each SW-task into a
fixed-segment self-suspending task (SS-Task)

 Suspension = delay bound + reconfiguration time + HW-task WCET

 Can be analyzed using Nelissen et. al’s response-time analysis for SS-
Tasks [ECRTS’15]

time

time

SW-task

HW-task

reconfiguration

execution

suspended

area contention FRI contention

delay

Italian Workshop on Embedded Systems – IWES 2017

Prototype implementation with Zynq

Preliminary overhead and

performance evaluation

Italian Workshop on Embedded Systems – IWES 2017

Reference Platform

Xilinx Zynq-7000 SoC

 2x ARM Cortex A9

 Xilinx series-7 FPGA

 AMBA Interconnect

Prototype FRED
implementation
on top of FreeRTOS

Italian Workshop on Embedded Systems – IWES 2017

FRED on Zynq - FRI

 Built-in device configuration subsystem called DevC:

 Internal interface to the PCAP port and a DMA engine.

 Can transfer a bitstream from the DRAM to the PL

configuration memory.

 No CPU cycles wasted during reconfiguration.

PS

DRAM

PL (FPGA)

DevC

A9 CoreA9 Core

Italian Workshop on Embedded Systems – IWES 2017

FRED on Zynq - Shared memory

 How to implement FRED’s shared memory paradigm:

 PS on chip memory (OCM)?

■ Too small (256 KB) for many HW-Tasks.

 PL buffers using BRAMs?

■ Small amount and waste of resources.

 Off-chip DRAM?

■ Large amount and architecturally suitable:

● Direct access from PL to DRAM controller through AXI HP ports.

HW-TaskSW-Task Buffer

X

X

Italian Workshop on Embedded Systems – IWES 2017

FRED on Zynq - Support design

 Each slot must be able to accommodate any kind of HW-Task

belonging to its partition:

 it is necessary to define a common interface:

■ AXI MM Master for accessing DRAM;

■ AXI MM Slave for control and up to 8 data registers;

● data regs are HW-T dependant: pointers or params.

■ Done signal for interrupt signalling.

Hardware

Accelerator

AXI MAXI S INT

Regs

HW-Task

Interface

specification

Synth.

Tool

Italian Workshop on Embedded Systems – IWES 2017

Experimental Setup

Xilinx Zybo Board
with Zynq-7010

Saleae
Logic Analyzer

Italian Workshop on Embedded Systems – IWES 2017

Case Study

 Four computational activities:

 Sobel image filter @ 100ms

 Sharp image filter @ 150ms

 Blur image filter @ 170ms

 Matrix multiplier @ 2500ms

 Both HW-task and pure SW-task versions have been
implemented

 Xilinx Vivado HLS synthesis tool for HW-tasks

 C language for SW-tasks

800x600 @ 24-bit

512x512 elements

Italian Workshop on Embedded Systems – IWES 2017

Reconfiguration Time and Speed-up

Time needed to
reconfigure a region of
~4K logic cells, 25% of the
total area

Speed-up analysis
comparing SW-task and
HW-task implementations Up to 15x

< 3 ms

~110 MB/s

reconfiguration time (ms)

CPU: Cortex A9 @ 650Mhz FPGA: Artix-7 @ 100Mhz

Italian Workshop on Embedded Systems – IWES 2017

Possible Approaches

CPU CPU CPU CPU

FPGA FPGA FPGA FPGA

Software
(no FPGA)

Static
(limited area)

FRED
(dynamic reconfig)

Ideal
(large-enough area)

Not feasible (time) Not feasible (area)

Italian Workshop on Embedded Systems – IWES 2017

Response Times

 The case study is not feasible

 with a pure SW implementation (CPU overloaded);

 with any combination of SW and statically configured HW tasks
(only two of them can be programmed).

With FRED we never observed a deadline

miss in a 8-hour run

Italian Workshop on Embedded Systems – IWES 2017

Supporting FRED in Linux on Zynq

Enabling predictable FPGA virtualization

for Linux

Italian Workshop on Embedded Systems – IWES 2017

FRED on Linux - How to…

 Implement FRED’s shared memory buffers?

 Linux uses virtual memory!

o Each SW-Task (process) has its own virtual address

space;

o HW-Tasks, like other HW devices, use physical

addresses;

o How to handle cache coherence?

 Implement the FRED’s scheduling policy?

 Receive and handle acceleration requests.

 Access and control hardware resources:

 HW-Accelerators modules;

 DevC, Decouplers.

Italian Workshop on Embedded Systems – IWES 2017

FredLinux - Software design keypoints

 FredLinux had been implemented, as much as possible, in

user-space to improve maintainability and safety:

 User space process to handle and schedule acceleration

requests;

 Minimal kernel support.

 Zero-copy design for shared buffers to avoid unnecessary

copy operations overhead and related memory traffic;

 Linux DMA layer provides functions for allocating and mapping

large coherent memory buffers (using CMA).

 Modular design to allow reusability and future extensions:

 Core mechanisms are independent from the platform and

hardware specific support.

Italian Workshop on Embedded Systems – IWES 2017

FredLinux - Software architecture overview

 The central component of FREDLinux is a user space

process named FRED server (fredd):

 Receives and handles acceleration request from SW-Tasks.

 Relies upon two custom kernel modules, and the UIO

framework, for low-level operations.

 Kernel modules functionalities:

 Buffer allocator provides shared memory buffers;

 DevC custom driver for reconfiguration;

 UIO framework: userspace drivers for HW-Tasks and

decouplers.

Italian Workshop on Embedded Systems – IWES 2017

FredLinux - Kernel space - Reconfiguration Driver

 Xilinx’s reconfiguration (DevC) driver is designed to be safe and

easy to use, not for efficiency:

 For each reconfiguration:

○ Allocates a new contiguous buffer;

○ Copies the whole bitstream from userspace to kernel;

○ Busy wait until completion.

 Unsuitable for the intensive use of partial reconfiguration required

by FRED!

 To overcome those issue the DevC driver has been modified:

 Exploit the allocator module to preload all the bitsreams in a set of

physically contiguous buffers;

 Now the reconfiguration can also be initiated by an ioctl() call

passing, as argument, a reference to the buffer;

Minimal overhead!

Italian Workshop on Embedded Systems – IWES 2017

FredLinux - Reconfiguration driver performance

 For a 338 KB bitstream, worst case: 2.94 ms vs 6.87 ms

 Speedup of 2.34 X and reduced variance.

2.34 X

Italian Workshop on Embedded Systems – IWES 2017

FredLinux - Overhead evaluation

 For a single acceleration request:

Maximum measured overhead less than 228 μs (Average 80 μs)

80 μs

Italian Workshop on Embedded Systems – IWES 2017

Conclusions

 Presented a framework to support the development of real-time
applications on top of SoC including both a CPU and a DPR-enabled FPGA

 Proposed response-time analysis

 Performed a validation with a prototype implementation in a RTOS

 Implemented in Linux with:

 Improvement of reconfiguration times by a factor of 2.34 X wrt stock driver

 Maximum measured overhead introduced by software support less than 228 μs

• Reconfiguration times in today’s platforms are not prohibitive (and

are likely to decrease in future)

• DPR can improve the performance of real-time application upon
static FPGA management

Italian Workshop on Embedded Systems – IWES 2017

Future Work

 There are a lot of possible future works and open
problems

 Development and analysis of other scheduling algorithms for
HW-tasks

 Worst-case analysis of the interconnect

 Investigation on partitioning approaches for the FPGA

 Integration of the support for preemptive FRI

 …

Italian Workshop on Embedded Systems – IWES 2017

Thank you!
Mauro Marinoni - m.marinoni@santannapisa.it

