

Efficient FPGA implementation of a Digital Transparent Satellite Processor

G. Marini, V. Sulli, F. Santucci, M. Faccio

University of L'Aquila, L'Aquila, Italy

Outline

- Introduction
- Problem Definition
- Resolution Method
- FPGA Implementation
- Results
- Conclusion
- Future Work

Introduction(1)

In satellite systems for telecommunications a great deal of interest concerns the mesh topology

[Mesh topology]

Introduction(2)

Four alternatives for the architecture of a satellite transponder:

- Fully transparent payload
- Fully regenerative payload
- Digital transparent payload
- Digital Semi-transparent payload

Introduction(3)

Four alternatives for the architecture of a satell ite transponder:

- Fully transparent payload
- Fully regenerative payload
- Digital transparent payload
- Digital Semi-transparent payload

Digital Transparent Processor (DTP) is involved

Introduction(4)

Four alternatives for the architecture of a satell ite transponder:

- Fully transparent payload
- Fully regenerative payload
- Digital transparent payload
- Digital Semi-transparent payload

Digital Transparent Processor (DTP) is involved

- Support of mesh networking
- Flexibility in the routing
- Frequency planning flexibility

Introduction(5)

Scenario of interest:

 79 beams (with 125 MHz allocated per beam) with fully connectivity and flexible routing in frequency, time spatial domains

Introduction(6)

In this context the digital semi-transparent payloads have been recently devised and

investigated

Problem Definition(1)

- A digital transparent/semi-transparent satellite payload can be see as a hybrid analog-digital on-board chain
- Modelling and design approaches have so far almost missed the ability to capture in an adequate way these important features

Problem Definition(2)

Problem:

To provide a method that, given the link-budget requirement, provides a detailed definition of digital HW components in the DTP

Resolution Method(1)

Step 1:

 Define a System Model of DTP-based Transponder

A DTP processing chain is composed by:

- P₀: ADC
- P₁: Analytical signal extrapolation
- P₂: Channalizer (analysis)
- Switching
- P₃: Channalizer (synthesis)
- P₄: IF signal extrapolation
- P₅: DAC

Resolution Method(2)

Step 2:

 Develop an equivalet noise model for the whole DTP chain to understand how link level performance (the DTP noise figure) may impact on the DTP hardware complexity

Resolution Method(3)

Step 3:

- Computing the hardware complexity in terms of:
 - i. Number of 2-words multipliers
 - ii. Number of 2-words adders
 - iii. Number of Flip-Flops
 - iv. Number of ROM bits

FPGA Implementation(1)

The DTP is composed by three basic blocks:

FIR filter elements, implemented in direct form

FPGA Implementation(2)

The DTP is composed by three basic blocks:

- FIR filter elements, implemented in direct form
- FFT/IFFT butterfly structures

FPGA Implementation(3)

The DTP is composed by three basic blocks:

- FIR filter elements, implemented in direct form
- FFT/IFFT butterfly structures
- RAM buffers

Results(1)

To the increase of DTP Noise Figure corresponds a degradation in the link performance show as reduction in the Additional Margin at the ground receiver

Results(2)

The DTP Hardware complexity may be directly linked to the chosen working point

Results(3)

For a given DTP Noise Figure, different hardware complexity can be obtained by applying different design approaches, e.g.:

- UP: Uniform Parameters
 UC: Uniform Contributions
- TO: Trade-Off
 MR: Minimum RAM

Conclusion

- We have developed a comprehensive framework for hardware complexity evaluation of novel satellite payloads that rely on semi-transparent transponder architectures
- The DTP complexity has been related to the overall processed bandwidth, the selected coding and modulation formats, and performance degradation requirements

Future Work

 Definition of an optimized criterion for DTP hardware design

 Adaptations of the developed framework to several scenarios of interest in satellite communications

Thanks