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Simulation Based Formal Verification of Onboard Software: A Case Study

System Level Verification of CPSs
• Cyber Physical System (CPS): hw + sw components 

⇒ Can be modelled as Hybrid System 

• System Level Verification (SLV): to verify that the whole 
system (hw+sw) satisfies given specifications 

• CPSs of industrial relevance too complex for SLV to be 
performed by model checkers for Hybrid Systems 

• Main workhorse for SLV: Hardware in The Loop Simulation 
(HILS)
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Hardware in The Loop Simulation
• Hardware in The Loop Simulation (HILS):  

replace hardware with a software simulator 
• Supported by Model Based Design Tools as Simulink, VisSim, …
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HILS Campaign: Main Obstacles
• Effort needed to define the operational 

scenarios defining disturbances to be 
injected into the system under 
verification. 

• Computation time needed to carry out 
the simulation campaign itself.
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• Degree of assurance achieved at 
the end of the HILS campaign: did 
we consider all relevant operational 
scenarios? 

• Graceful degradation: what can we 
say about the error probability 
during the HILS campaign?

Hard to be done manually

Can take weeks!

“Did I overlook anything?”

“What can I say if I abort 
verification now?”
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Our approach to System Level Formal Verification
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• Effort needed to define the 
operational scenarios defining 
disturbances to be injected into 
the system under verification. 

• Degree of assurance: did we 
consider all relevant operational 
scenarios? 

• Graceful degradation: what can 
we say about the error 
probability during the HILS 
campaign?  

• Computation time needed to 
carry out the simulation 
campaign itself.

• Formal model of operational 
scenarios (disturbance model) 
as a FSA described in a high-
level language (CMurphi) 

• Exhaustive system level 
verification wrt operational 
scenarios defined by the model 

• Anytime random algorithm: at 
any time we compute an upper 
bound to Omission 
Probability

• Embarrassing parallel multi-
core approach to speed up 
simulation + optimisation  

[CAV13, PDP14, DSD14, PDP15, Microprocessors & Microsystems 2016, Fundamenta Informaticae 2016]



Simulation Based Formal Verification of Onboard Software: A Case Study

Model-Based System Verification @ MCLab
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SyLVaaS
• Introduces Verification as a Service paradigm 
• Supports companies in the CPS design business in their daily 

verification activities  
• Allows keeping both the SUV model and the property to be 

verified secret (Intellectual Property protection)
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Modelling the Operational Environment
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Discrete event sequence u(t)
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SUV: continuous-time 
input-state-output 

deterministic 
dynamical system

SUV input: discrete event seq. 
• Associates to each (real) t a 

disturbance event within [0,d] 
• Differs from 0 (no disturbance) 

in a finite number of time-points 
…no system can withstand an infinite 
number of disturbances within a 
finite time

Property to be verified: 
embedded in a continuous-time 
SUV monitor

SUV output: 0 at 
start; goes to and 
stays 1 as soon as 
error is detected
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Discrete Event Seq’s & Disturbance Traces
We aim at Bounded System Level Formal Verification: 
• Bounded time horizon: h 
• Bounded time quantum between disturbances: 𝜏
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A tiny example
• Just one disturbance (fault), always  

recovered within 4 seconds 
• At least 5 seconds between two  

consecutive disturbances 
• Time quantum 𝜏 = 1 second 
• Time horizon h = 6 seconds

Disturbance Model
• Defining all disturbance sequences the SUV should withstand 

cannot be done manually for large CPSs 
• Approach: use high-level modelling language to define 

disturbance model as a Finite State Automaton
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Fig. 1: (a) A discrete event sequence (d = 3); (b) Our SUV
embedding a monitor; (c) The SUV monitor output.

A. Modelling the Operational Environment

Our System Under Verification (SUV) is a Discrete Event
System (DES), namely a continuous time Input-State-Output
deterministic dynamical system [5] whose inputs are discrete
event sequences. A discrete event sequence is a function
u(t) associating to each (continuous) time instant t 2 R+

a disturbance event (or, simply, disturbance). Disturbances,
encoded by integers in the interval [0, d] (for a given d 2 N+),
represent uncontrollable events (e.g., faults). We use event 0
to represent the event carrying no disturbance. As no system
can withstand an infinite number of disturbances within a finite
time, we require that, in any time interval of finite length, a
discrete event sequence u(t) differs from 0 only in a finite
number of time points (Fig. 1a).

System level verification follows an Assume-Guarantee
approach aimed at showing that the SUV meets its specifica-
tion (Guarantee) as long as the SUV operational environment
behaves as expected (Assume). As we focus on bounded
system level verification, we model (Definition 1) the SUV
operational environment as the sequence of disturbances our
SUV is expected to withstand within a finite time horizon.
We also bound the time quantum between two consecutive
disturbances.

Definition 1 (Disturbance trace): Let h, d 2 N+. An
(h, d) disturbance trace � is a finite sequence � : [0, h� 1]!
[0, d]. Given ⌧ 2 R+ (time quantum), to an (h, d) disturbance
trace � we can univocally associate a discrete event sequence
u

⌧

�

, defined as follows: for all t 2 R�0, if there exists
j 2 [0, h� 1] such that t = ⌧j then u

⌧

�

(t) = �(j), else u

⌧

�

(t) =
0 (no disturbance).

Thus a disturbance trace � defines an operational scenario
(namely, u

⌧

�

) for our SUV. Fig. 2d shows the discrete event
sequence associated to a disturbance trace. We represent our
SUV operational environment as a finite set of (h, d) distur-
bance traces � = {�0, . . . , �

n�1}, since U

⌧

� = {u

⌧

�0
, . . . ,

u

⌧

�n�1
} (for a given ⌧ 2 R+) defines the operational scenarios

our SUV should withstand. Note that, by taking h large enough
(as in Bounded Model Checking (BMC)) and ⌧ small enough
(to faithfully model our SUV operational scenarios), we can
achieve any desired precision. On such considerations rests the
effectiveness of the approach.

As it is typically infeasible to define a SUV operational
environment by explicitly listing all its disturbance traces, we
define an operational environment with a disturbance model
which is in turn defined as the language accepted by a suitable
Finite State Automaton. The following example clarifies this
point.

Example 1: Consider a disturbance model consisting of
one disturbance (namely, a fault) which is always recov-
ered within 4 seconds. Between two consecutive disturbances
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Fig. 2: (a) Disturbance model; (b) CMurphi-based disturbance
generator; (c) Generated sequence of disturbance traces (d =

3, h = 6); (d) The discrete event sequence associated to the
trace in the black rectangle in part (c), given time quantum ⌧ .
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(a)

function disturbanceModel(h)
c 0; /* counter */
t 0; /* time */
while t  h do

d read(); t t + 1;
if c > 0 then c c� 1;
if d = 1 then

if c > 0 then return ⌦;
else c 4;

return
p

;
end

(b)

Fig. 3: Example 1: (a) Admissible disturbance traces (
p

) and
shortest disturbance sequences that cannot be extended to an
admissible disturbance trace (⌦); (b) Finite state automaton
recognising the language of admissible disturbance traces
(disturbance model).

(faults) there must be at least 5 seconds. We assume that
disturbances can arise only at time steps multiple of ⌧ = 1

second (time quantum). We also set the verification time
horizon to 6 seconds. In Fig. 3a we show disturbance traces
represented as strings of zeros (no disturbance) and ones
(disturbance), with time flowing from left to right. Strings
terminated by

p
denote all the disturbance traces accepted by

the disturbance model (admissible disturbance traces). Strings
terminated by ⌦ are the shortest sequences of disturbances that
cannot be extended to an admissible disturbance trace. Fig. 3b
shows pseudo-code for a finite state automaton recognising
such a language.

We define a finite state automaton for a disturbance model
using the modelling language of a finite state model checker
(namely, CMurphi [6]), along the lines of [1].

B. Modelling the Property to be Verified

Along the lines of [7], we model the property to be verified
with a continuous-time monitor which observes the state of the
system to be verified and checks whether the property under
verification is satisfied (Fig. 1b). The output of the monitor
is 0 as long as the property under verification is satisfied and
becomes and stays 1 (sustain) as soon as the property fails,
thus ensuring that we never miss a property failure report, even
when sampling the monitor output only at discrete time points
(Fig. 1c). The use of monitors gives us a flexible approach
to model the property to be verified. In particular, it is easy
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function disturbanceModel(h)
c 0; /* counter */
t 0; /* time */
while t  h do

d read(); t t + 1;
if c > 0 then c c� 1;
if d = 1 then

if c > 0 then return ⌦;
else c 4;

return
p

;
end
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Fig. 3: Example 1: (a) Admissible disturbance traces (
p

) and
shortest disturbance sequences that cannot be extended to an
admissible disturbance trace (⌦); (b) Finite state automaton
recognising the language of admissible disturbance traces
(disturbance model).

(faults) there must be at least 5 seconds. We assume that
disturbances can arise only at time steps multiple of ⌧ = 1

second (time quantum). We also set the verification time
horizon to 6 seconds. In Fig. 3a we show disturbance traces
represented as strings of zeros (no disturbance) and ones
(disturbance), with time flowing from left to right. Strings
terminated by

p
denote all the disturbance traces accepted by

the disturbance model (admissible disturbance traces). Strings
terminated by ⌦ are the shortest sequences of disturbances that
cannot be extended to an admissible disturbance trace. Fig. 3b
shows pseudo-code for a finite state automaton recognising
such a language.

We define a finite state automaton for a disturbance model
using the modelling language of a finite state model checker
(namely, CMurphi [6]), along the lines of [1].

B. Modelling the Property to be Verified

Along the lines of [7], we model the property to be verified
with a continuous-time monitor which observes the state of the
system to be verified and checks whether the property under
verification is satisfied (Fig. 1b). The output of the monitor
is 0 as long as the property under verification is satisfied and
becomes and stays 1 (sustain) as soon as the property fails,
thus ensuring that we never miss a property failure report, even
when sampling the monitor output only at discrete time points
(Fig. 1c). The use of monitors gives us a flexible approach
to model the property to be verified. In particular, it is easy

FSA recognising admissible disturbance traces 
(we actually use the rich language of the 

CMurphi model checker)
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SyLVaaS Workflow
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slice 1
Computation of optimised 
rnd exhaustive simulation 

campaigns
sim. campaign 1

embarrassing parallelism in SyLVaaS cluster

…

… slice k
Computation of optimised 
rnd exhaustive simulation 

campaigns
sim. campaign k

Optimised Rnd Exhaustive Sim. Campaigns

• Optimisation: use of load/store 
commands avoids revisiting previously 
visited simulation states as much as 
possible 

• Exhaustiveness: all disturbance traces in 
input slice are verified 

• Randomness: trace verification order is 
randomised

Sequence of simulator commands: 
• inj_run(e, t): inject disturbance and 

advance simulation 
• store(l): store current sim. state into 

mass memory 
• load(l): set current sim. state from 

previously stored state 
• free(l): free stored sim. state stored
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Simulation campaign (rnd+optimised) 
init store(a)

3

load(a) inj_run(0,1) store(b) 
inj_run(2,1𝜏) store(c) 
inj_run(2,2𝜏) store(i) 
inj_run(3,2𝜏)

1 load(c) inj_run(1,3𝜏) 
inj_run(1,1𝜏)

6 load(b) free(b) 
inj_run(3,3𝜏) inj_run(1,2𝜏)

5
load(c) free(c) 
inj_run(3,1𝜏) store(p) 
inj_run(2,1𝜏) inj_run(2,2𝜏)

4 load(p) free(p) 
inj_run(1,1𝜏) inj_run(1,2𝜏)

2 load(i) free(i) free(a) 
inj_run(0,2𝜏)

Optimised Rnd Exhaustive Sim. Campaigns
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Slice of labelled traces 
1 a0b2c1d0e0f1g

2 a0b2c2h0i0j0k

3 a0b2c2h0i3m0n

4 a0b2c3p1q1r0s

5 a0b2c3p2v2w0x

6 a0b3y0z0α1β0λ

Prefix labelling 
during generation 

(DFS —> free!)

Labels 
univocally 

denote trace 
prefixes
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Embarrassingly Parallel Simulation
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sim.camp k

sim.camp 3

…

Simulation carried out on user private cluster (Intellectual Property protection)

k overall Simulink 
instances on k cores

SUV model + 
embedded 

property monitor

Anytime bound to 
Omission Probability: 

1 - mini ∈ [1,k] (%donei)…
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fail + cntrex
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A Case Study: Apollo
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A Case Study: Apollo
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Yaw, Pitch and 
Roll Jets

Three signals: 
Yaw, Pitch and 
Roll sensors

Safety: Yaw, Pitch and Roll close to 0
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A Case Study: Apollo
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Experiments: Disturbance Models
Disturbance model:

• sensor faults repaired after 1 second 
• 5 different sensor faults possible 
• at most 3 faults in each trace 
• at most 1 fault active at any time 
• h = 10 sec, 𝜏 = 500ms
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Disturbance model CMurphi encoding
Ruleset d : FAULT TYPE do

Rule ” I n j e c t Fault ”
t im e s i n c e l a s t f a u l t [ d ] = �1 &
no f a u l t n e e d s r e p a i r ( ) &
num faults < MAXNUMFAULTS &
num ac t i v e f au l t s ( ) < MAX NUM ACTIVE FAULTS

==> begin

t im e s i n c e l a s t f a u l t [ d ] := 0 ;
num faults := num faults+1;
t ime s t ep ( ) ;

end ;

Rule ”Repair Fault ”
t im e s i n c e l a s t f a u l t [ d ] = FAULT DURATION

==> begin �� r epa i r f a u l t d
t im e s i n c e l a s t f a u l t [ d ] := �1;
t ime s t ep ( ) ;

end ;
End ;

Ruleset d : INPUT TYPE do

Rule ” I n j e c t Input Var ia t ion ”
n o f a u l t n e e d s r e p a i r ( ) &
num inputs < MAX NUM INPUTS &
i s i n pu t v a r i a t i o n a l l ow ed ( )

==> begin

num inputs := num inputs + 1 ;
t ime s t ep ( ) ;

end ;
End ;

Rule ”No Disturbance ”
n o f a u l t n e e d s r e p a i r ( ) ==>

begin t ime s t ep ( ) ; end ;
. . .
Finalstate ”Correct Length ”

n o f a u l t s ( ) & num faults <= MAXNUMFAULTS &
num inputs <= MAX NUM INPUTS;

Figure 5: Fragment of the CMurphi code of our disturbance model, showing the rules to inject sensor failures and repairs

erate the same set of n = 12,948,712 scenarios entailed by
our disturbance model of Section 5. It can be seen that r
rapidly grows (much beyond n, the horizontal line) when-
ever we aim at a high coverage ratio (which is required in
order to spot hard to find or rare errors, as this is the ulti-
mate goal of a verification activity). In particular, in case we
limit ourselves to generate exactly r = n random samples,
only a bit more than 60% of all the distinct simulation sce-
narios would be generated on average, and this would yield
an extremely unreliable result of the verification activity. In
order to achieve expected 100% coverage of the simulation
scenarios (which could be yet not su�cient for safety-critical
systems, as this is expected coverage), we should generate a
number of r = 219,528,872 samples, which is about 17 times
higher than n. Table 2(left) shows the time to simulate this
number of scenarios in our case study, when using k = 512
cores (64 8-core machines) in parallel.

6.2 System Level Formal Verification
The System Level Formal Verification (SLFV) methodol-

ogy of Section 2 seamlessly integrates into the current prac-
tice design flow. In particular, steps 1, 2 and 3 of Table 1
are unchanged.

Table 2 (right) shows how steps 4 and 5 of Table 1 are
implemented by SLFV. Step 4, i.e., definition of the sim-
ulation scenarios, is realised by formalising a disturbance
model within the CMurphi modelling language. This task,
described in Section 5.2, requires a system verification engi-
neer having some knowledge in formal methods, and for our
case study took about 2 PD.

The final step 5 of Table 1 is implemented in a completely
automated way, by splitting the set of disturbance traces
entailed by the disturbance model into a number k of slices
(one per available computational core) and computing and
executing optimised simulation campaigns, one per slice.

Note that SLFV enables massive parallelism (see Fig. 3)
as Monte Carlo HILS-based verification does. The only se-
quential step is disturbance trace generation and splitting,
whose overall time is about 5 hours. Table 2 (right) shows
the overall time to perform trace generation and splitting,
and embarrassingly parallel simulation campaign computa-
tion and execution using k = 512 cores (64 8-core machines).

(a) samples (b) simulation time

Figure 6: Monte Carlo vs. SLFV

The overall time to perform steps 4 and 5 (the steps which
di↵er in the two approaches) is 34.4 days for Monte Carlo
and of just 3.3 days for SLFV, with a saving of 90.5%.
Fig. 6b shows the time required to Monte Carlo to achieve

various target expected coverage ratios (black curve) on our
case study and the (actual) time required by exhaustive
SLFV (the horizontal line). Both curves have been ob-
tained by using k = 512 computational cores in parallel. It
can be observed that the coverage achieved by Monte Carlo
within the completion time of our SLFV approach is much
lower than the coverage reached at the intersection point in
Fig. 6a. This is an indirect measure of the amount of opti-
misation possible (and actually performed) during computa-
tion of the SLFV simulation campaigns. As such an optimi-
sation stores and restores previously visited simulator states
(corresponding to disturbance sequences which are prefixes
of multiple disturbance traces) as much as possible, this sig-
nificantly reduces the average disturbance trace simulation
time.

7. RELATED WORK
Formal verification of Simulink models has been widely

investigated, examples are in [34, 29, 37, 9, 8]. Such methods
however focus on discrete time models (e.g., Statecharts,
or Simulink Stateflow restricted to discrete time operators)
with small domain variables. Therefore they are well suited

—> 8.9M dist. traces
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Experiments: Infrastructure
SyLVaaS infrastructure:

• 1 orchestrator  
• 16 slaves
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SyLVaaS

orchestrator

slave 1

slave 2

slave 16

…

User private cluster:
• 8 to 64 8-core machines  

—> up to 512 Simulink parallel instances 
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Experiments (1)
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SyLVaaS:  
Parallel computation of random exhaustive optimised simulation 
campaigns (16 cores):

k = #cores  
in user cluster

Computation of 
simulation campaigns

128 0:22:18
256 0:22:18
512 0:24:30

SyLVaaS

Disturbance 
model

k

sim.camp 1

sim.camp 2

sim.camp k

h:m:s
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Experiments (2)
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Private user cluster:  
Formal verification via embarrassing parallel execution of simulation 
campaigns (k=128, 256, 512 parallel Simulink instances):

k = #cores  
in user cluster

Execution of  
simulation campaigns

128 726:53:25
256 121:06:28
512 44:26:37

Sy
LV

aa
S 

 
op

tim
is

at
io

n

4x  
speedup

SyLVaaS + Simulink

-0.5

0

0.5

1

1.5

 0  0.2  0.4  0.6  0.8  1
coverage

k=128

k=256

k=512

completion time 
estimation error

sim.camp 1

sim.camp 2

sim.camp k

h:m:s
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Conclusions
SyLVer: System Level Verifier 
SyLVaaS: SyLVer as a Service 

• Given formal model of operational environment 
• Efficiently computes random exhaustive simulation campaigns 
• Approach scales well: additional experiments with dist. models yielding 40M traces  
• Campaigns run embarrassingly in parallel on all Simulink instances available on private 

user cluster 
• Campaigns optimise simulation activities (4x speedups) by storing/restoring 

intermediate simulation states as much as possible (depending on available mass 
memory space on user cluster) 

• Graceful degradation: omission probability bound available anytime during verification 
• Completion time estimation  

available anytime during verification 

• Both SUV model and property to  
be verified kept secret  
(Intellectual Property protection)
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