UNIVERSITA DI ROMA

Simulation Based Formal Verification
of Onboard Software

— A Case Study —
SyLVer: System Level Verifier

Toni Mancini, Annalisa Massini, Federico Mari, Igor Melatti,
lvano Salvo, Enrico Tronci

Computer Science Department
Sapienza University of Rome, ltaly
http://mclab.di.uniromai.it

http://mclab.di.uniroma1.it

System Level Verification of CPSs

* Cyber Physical System (CPS): hw + sw components
—> Can be modelled as Hybrid System

 System Level Verification (SLV): to verify that the whole
system (hw+sw) satisfies given specifications

* CPSs of industrial relevance too complex for SLV to be
performed by model checkers for Hybrid Systems

* Main workhorse for SLV: Hardware in The Loop Simulation
(HILS)

O SAPIENZA Simulation Based Formal Verification of Onboard Software: A Case Study

Hardware in The Loop Simulation

* Hardware in The Loop Simulation (HILS):
replace hardware with a software simulator

* Supported by Model Based Design Tools as Simulink, VisSim, ...

System Under Veritication (SUV) Simulator

| |

uncontrollable

inputs: — | Operational Simulation
faults, changes scenario output
INn sys params, ... /\
“disturbances” Pass Fail

%A\ . , . - ,
485 SAPIENZA Simulation Based Formal Verification of Onboard Software: A Case Study

N4

HILS Campaign: Main Obstacles.

injected Into the system under
verification.

Effort needed to define the operational
scenarios defining disturbances to be

SUV Sim@, 4

 Computation time needed to carry out

the simulation campaign itselt.

* Degree of assurance achieved at
the end of the HILS campaign: did
we consider all relevant operational
scenarios”?

* Graceful degradation: what can we
say about the error probability
during the HILS campaign?

Operational Simulation
scenario output

Pass Falil

\Hard to be done manually

Can take weeks!

\

“Did | overlook anything?”

=l

“What can | say if | abort
verification now?”

@ SAPIENZA Simulation Based Formal Verification of Onboard Software: A Case Study

UNIVERSITA DI ROMA

Our approach to System Level Formal Verificatio

Effort needed to define the
operational scenarios defining
disturbances to be injected into
the system under verification.

Degree of assurance: did we
consider all relevant operational
scenarios”

Graceful degradation: what can
we say about the error
probability during the HILS
campaign”

Computation time needed to
carry out the simulation
campaign itself.

i

Formal model of operational
scenarios (disturbance model)
as a FSA described in a high-

level language (CMurphi)

Exhaustive system level
veritication wrt operational
scenarios defined by the model

Anytime random algorithm: at
any time we compute an upper
bound to Omission
Probability

Embarrassing parallel multi-
core approach to speed up
simulation + optimisation

[CAV13, PDP14, DSD14, PDP15, Microprocessors & Microsystems 2016, Fundamenta Informaticae 2016]

o
%S

APTENZA Simulation Based Formal Verification of Onboard Software: A Case Study

IVERSITA DI ROMA

Model-Based System Verification @ MCLab

Disturbance Model (formal model of operational scenarios)

]
SyLVer

System Level Formal Verifier

o Bhttps://bitbucket.org/mclab/sylver-simulink-driver
LOAD - RUN - FREE -STORE

Simulator _h Omission Probabili
- OPtimisey Simulator i
Simulation Driver CPS Monit Monitor output
0

. Parallel (cluster) :

Simulator _}[Omission Probability
Simulator
Driver
o

CPS . Monitor output
[Model]+{ Monitor }_’, 1 fail
= 0 ‘passl

Optimised
L—» Simulation
Campaign

4

Hardware-in-the-Loop Simulation (HILS)

b7 SAPIENZA Simulation Based Formal Verification of Onboard Software: A Case Study

* Introduces Verification as a Service paradigm

* Supports companies in the CPS design business in their daily
veritication activities

* Allows keeping both the SUV model and the property to be
verified secret (Intellectual Property protection)

| property \

v

Private cluster

MATLAB
SIMULINK

& SAPIENZA
M UNIVERSITA DI ROMA

2 Disturbance model
(CMurphi syntax)

SyLVaaS

Verification

engineer
3) Optimised simulation
N campaigns for random

exhaustive parallel HILS

Simulation Based Formal Verification of Onboard Software: A Case Study

Modelling the Operational Environment

Discrete event sequence u(t)

u(t)
0=3 rg
1

Monitor

|

no
disturb. _
disturbance event

SUV input: discrete event seq. Property to be verified:
* Associates to each (real) ta embedded in a continuous-time
disturbance event within [0, d] SUV monitor
* Differs from O (no disturbance) | |
in & finite number of time-points | | gyy: continuous-time SUV output: O at
...no system can withstand an infinite Input-state-output start; goes to ana
number of disturbances within a deterministic stays 1 as soon as
finite time dynamical system error Is detected

) SAPIENZA Simulation Based Formal Verification of Onboard Software: A Case Study

UNIVERSITA DI ROMA

Discrete Event Seqg’s & Disturbance Traces

We aim at Bounded System Level Formal Verification:

* Bounded time horizon: h
* Bounded time quantum between disturbances: t

Discrete event sequence (h,d) disturbance trace

> 00203000001000200
-—p
h

Q SAPTENZA Simulation Based Formal Verification of Onboard Software: A Case Study

Disturbance Model

* Detining all disturbance sequences the SUV should withstand
cannot be done manually for large CPSs

* Approach: use high-level modelling language to define
disturbance model as a Finite State Automaton

A tlny example function disturbanceModel(h)
¢ < 0; /* counter */
* Just one disturbance (fault), always : ;10;/2 %ﬂlle */
. . wilie 0
recovered within 4 seconds d < read(): t+ t+1:
* Atleast 5 seconds between two 3£ (cj> (i ttllllen ¢ c—1;
: . 1 = cn
consecutive disturbances if c> 0 then return ®:
* Time quantum t = 1 second t els'i/c% 4
: : return +/;
* Time horizon h = 6 seconds end
FSA recognising admissible disturbance traces l 000000~/ 010000~/ overall 8 adm
(we actually use the rich language of the 000001/ 010001® "
CMurphi model checker) 000010/ 01001 disturbance traces

@' SAPTENZA Simulation Based Formal Verification of Onboard Software: A Case Study

¥ d/ UNIVERSITA DI ROMA

SyLVaasS Worktlow

k: Number of cores sim.camp 1
INn user cluster

sim.camp 2

sim.camp k

Disturbance
model

Master-slave Embarrassing
distributed approach parallelism

0P :
§ D P slice 1 =P

S
4: (o e — .
O 5 o B slice 2 =—rpb
O © O 5
S o =P S c : . —
0 S =2 @ : Computation of optimised
BDENG)) = ; .
Z = *shce P |_|! random exhaustlye
' % simulation campaign

) SAPIENZA Simulation Based Formal Verification of Onboard Software: A Case Study

UNIVERSITA DI ROMA

Optimised Rnd Exhaustive Sim. Campaign

iﬁb\
Computation of optimised =

slice 1—| rnd exhaustive simulation F——{sim. campaign 1
campaigns

-«=xx embarrassing parallelism in SyLVaaS cluster «==..

~»
Computation of optimised J\'
slice k——! rnd exhaustive simulation ——sim. campaign k

campaigns /\

* Optimisation: use of load/store Sequence of simulator commands:
commands avoids revisiting previously * inj_run(e, f): inject disturbance and
visited simulation states as much as advance simulation
possible e store(/): store current sim. state into

 Exhaustiveness: all disturbance traces in mass memory
input slice are veritied e load(/): set current sim. state from

« Randomness: trace verification order is previously stored state
randomised o free(l): free stored sim. state stored)

48> OAPIENZA Simulation Based Formal Verification of Onboard Software: A Case Study

S

Optimised Rnd Exhaustive Sim. Campaign

Slice Simulation campaign (rnd+optimised)

1 021001 » init store(a)
2 022000 J \ load(a) inj_run(0,1) store(b)
3 022030 3 inj_ run(21r Qe
4 023110 inj_run(2,2
5 oz20 ni_run(3 2
6 03001‘0F Prefix labelling ; load(c) inj_run(1,37)
during generation inj_run(1,17)

(DFS —> free!) \ 5 load(b) free(b)

inj_run(3,37) inj_run(1,27)

Slice oOf labelled traces

1 c1d0e0flg

2 1070k 4/{

3 a0b2c2h0i3mOn [Labels _
plair0s | | univocally

denote trace
6 b3yOzOo(1|30y prefixes

2ree(i) free(a)
inj_run(0,27)

@ SAPTENZA Simulation Based Formal Verification of Onboard Software: A Case Study

UNIVERSITA DI ROMA

Embarrassingly Parallel Simulation

Simulation carried out on user private cluster (Intellectual Property protection)

sim.camp 1

sim.camp 2 Anytime bound to
Omission Probability:

sim.camp 3

1-minje [1,k] (%dOnei)

sim.camp k

MATLAB
SIMULINK
SUV model +

embedded
property monitor

k overall Simulink
instances on k cores

Q SAPIENZA Simulation Based Formal Verification of Onboard Software: A Case Study

A Case Study: Apollo

- =

S+l stagl

J-2 engif »s (5)
— SC stag »

F-1 engif »s (5)

Saturn V Launch Vehicle —
|

-

pitch engif

drogue parac

- pitch engine

pitch engiges

MY
) A

. .- roll engine

‘& \ forward comparti
-___;’\\
44-7“]1!5
A
A A,
roll engings

docking probe
I,J
Y
o g o e
1

Apollo Command and

Service Modules -.yaw engine

© 2009 Endliciopedia Britareics, |

main parachutes (3)
aquipment bay

@ SAPTENZA Simulation Based Formal Verification of Onboard Software: A Case Study

UNIVERSITA DI ROMA

N

A Case Study: Apollo

How it Would be Done Today!

Inverse of the
Inartia Matnx

]
>
. Pitch Acceleration
Yaw, Pitch and B — : [, -, o
Roll Jets Command __ JTL_, L . = e SETT O o e R P
to Autopilot : . Sum I-m:rse times Integrator —_— !
orque m nge titudes
Hold at delt Reaction Jet Control Position
- a Inertia Matrix Initial Rate l:]
. n -
Three signals: = | s o T o Poston
& Momentum (H Matrix
Yaw, Pitch and N - P Mgy e—0m |
|
" vi | Omega
Roll sensors :.r.- L Y

Two Jet Nominal Two Jet Couplas
Phase Plane -
Prot = Inttialize Data Stores
-0 -0
oy =
Four Jet Two Jet or Write Var Ascent Single Single Jet (Ascent) Wirite
Read data . PitchRoll Var
Four Jet Yaw Jots or Two Jet Yaw NofJots PitchRollJots
Couples Couples
Read the "News & Notes" article
about this model over the web.
(Double-Click Hara) Copyright 1990-2013 The MathWorks, Inc.

Safety: Yaw, Pitch and Roll close to 0

@D SAPIENZA

UNIVERSITA DI ROMA

N

Simulation Based Formal Verification of Onboard Software: A Case Study

MATLAB
SIMULINK

A Case Study: Apollo

Three signals 7} Hownwouabopone Todeyt MATLAB
demuxed to o SIMULINK
disturb singularly =
.' EEDE .bm. L
: =
: = =

.\—0 Fanavemes

Ol BhE MOCE Over e wel

Copyrght 15602017 The MattwWoras, Inc

Checking
safety property

Monitor output

fail

@ SAPTENZA Simulation Based Formal Verification of Onboard Software: A Case &

UNIVERSITA DI ROMA

Experiments: Disturbance Models

Disturbance model:
* sensor faults repaired after 1 second
* 5 different sensor faults possible
* at most 3 faults in each trace
* at most 1 fault active at any time
* h=10sec, Tt = 500ms

Disturbance model CMurphi encoding

Ruleset d : INPUT_TYPE do

—> 8.9M dist. traces

Ruleset d : FAULTTYPE do

)
m‘ 5/ A\

A WVF/ UNIVERSITA DI ROMA

&

Rule "Inject Fault”
time_since_last_fault [d] = -1 &
no_fault_needs_repair () &
num_faults < MAXNUMFAULTS &
num_active_faults () < MAXNUM ACTIVE FAULTS
——> begin
time_since_last_fault [d] := 0;
num_faults := num_faults+1;
time_step () ;
end ;

Rule ”Repair Fault”

time_since_last_fault [d] = FAULT_DURATION
——> begin — repair fault d
time_since_last_fault [d] :=
time_step () ;
end ;
End;

INLSN

Rule "Inject Input Variation”
no_fault_needs_repair () &
num_inputs < MAXNUM.INPUTS &
is_input_variation_allowed ()

=—> begin

num_inputs =
time_step () ;
end ;

num_inputs + 1;

End;

Rule "No Disturbance”
no_fault_needs_repair () =>
begin time_step(); end;

Finalstate ”Correct Length”
no_faults () & num_faults <= MAXNUMFAULTS &
num_inputs <= MAXNUM_INPUTS;

Slmulation basead rormal vericaton of Unboard ooltware. A Lase otuay

Experiments: Infrastructure

SyLVaaS infrastructure:
* 1 orchestrator

SyLVaaS
orchestrator‘ -
[slave 16}

e 16 slaves

User private cluster:

* 8to 64 8-core machines
—> up to 512 Simulink parallel instances

MATLAB | gy | | XD | | =X | | =X
SIMULINK | gy | | =323 | | =233 | | =233

/%4 . , : o .
@‘% SAPTENZA Simulation Based Formal Verification of Onboard Software: A Case Study

Experiments (1)

SyLVaaS:
Parallel computation of random exhaustive optimised simulation
campaigns (16 cores):

k = #cores Computation of

In user cluster simulation campaigns
128 0:22:18
256 0:22:18
512 0:24:30

n:m:s

Disturbance | l » [sim.camp 1
model
SyLVaaS —e—p | SIM.CAMP 2
k —_—_— —_—eeeeop | SIM.CAMP K

@ SAPIENZA Simulation Based Formal Verification of Onboard Software: A Case Study

UNIVERSITA DI ROMA

Experiments (2)

Private user cluster:
Formal verification via embarrassing parallel execution of simulation
campaigns (k=128, 256, 512 parallel Simulink instances):

MATLAB

SIMULINK

k = #cores Execution of g

In user cluster simulation campaigns sim.camp 1 —» | =KXX3

128 726:53:25 S camp 2 _,[i-—fl

256 121:06:28 —_. bl 223

512 44:26:37 [é=g]

h:m:S m
SyLVaaS + Simulink MATLAB 1'? completiontime ——
imulink SIMULINK |1 i —
SylLVaa 99% 4x o —
1% peedup > o|.2 o|.4 _ol.s ol.s 1

()
% SAPIENZA

coverage

UNIVERSITA DI ROMA

Simulation Based Formal Verification of Onboard Software: A Case Study

Conclusions

SyLVer: System Level Veritier

SyLVaaS: SyLVer as a Service

« Given formal model of operational environment
« Efficiently computes random exhaustive simulation campaigns
 Approach scales well: additional experiments with dist. models yielding 40M traces

« Campaigns run embarrassingly in parallel on all Simulink instances available on private
user cluster

 Campaigns optimise simulation activities (4x speedups) by storing/restoring
intermediate simulation states as much as possible (depending on available mass
memory space on user cluster)

« Graceful degradation: omission probability bound available anytime during verification

« Completion time estimation
available anytime during verification

~suva! @(Disturbanoe model
(CMurphi syntax)
« Both SUV model and property to Private cluster % hitp > (SyLVaa$S

be verified kept secret X Verification
I — G engineer <
(Intellectual Property protection) —r @ @P S T
MaTIAB | campaigns for random
SIMULINK exhaustive parallel HILS

@ SAPTENZA Simulation Based Formal Verification of Onboard Software: A Case Study

UNIVERSITA DI ROMA

N

UNIVERSITA DI ROMA

Thank you!

Simulation

Based Formal Verification of

Cyber-physical Systems

SyLVaaS: System Level Verification as a Service

Toni Mancini, Annalisa Massini, Federico Mari, lgor Melatti,

lvano Salvo, Enrico Tronci

Computer Science Department
Sapienza University of Rome, Italy

http://mclab.di.uniromai.it

http://mclab.di.uniroma1.it

