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System Level Verification of CPSs

* Cyber Physical System (CPS): hw + sw components
—> Can be modelled as Hybrid System

 System Level Verification (SLV): to verify that the whole
system (hw+sw) satisfies given specifications

* CPSs of industrial relevance too complex for SLV to be
performed by model checkers for Hybrid Systems

* Main workhorse for SLV: Hardware in The Loop Simulation
(HILS)
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Hardware in The Loop Simulation

* Hardware in The Loop Simulation (HILS):
replace hardware with a software simulator

* Supported by Model Based Design Tools as Simulink, VisSim, ...

System Under Veritication (SUV) Simulator

| |

uncontrollable

inputs: — | Operational Simulation
faults, changes scenario output
INn sys params, ... /\
“disturbances” Pass Fail
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HILS Campaign: Main Obstacles.

injected Into the system under
verification.

Effort needed to define the operational
scenarios defining disturbances to be

SUV Sim@, 4

 Computation time needed to carry out

the simulation campaign itselt.

* Degree of assurance achieved at
the end of the HILS campaign: did
we consider all relevant operational
scenarios”?

* Graceful degradation: what can we
say about the error probability
during the HILS campaign?

Operational Simulation
scenario output

Pass Falil

\Hard to be done manually

Can take weeks!

\

“Did | overlook anything?”

=l

“What can | say if | abort
verification now?”
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Our approach to System Level Formal Verificatio

Effort needed to define the
operational scenarios defining
disturbances to be injected into
the system under verification.

Degree of assurance: did we
consider all relevant operational
scenarios”

Graceful degradation: what can
we say about the error
probability during the HILS
campaign”

Computation time needed to
carry out the simulation
campaign itself.

i

Formal model of operational
scenarios (disturbance model)
as a FSA described in a high-

level language (CMurphi)

Exhaustive system level
veritication wrt operational
scenarios defined by the model

Anytime random algorithm: at
any time we compute an upper
bound to Omission
Probability

Embarrassing parallel multi-
core approach to speed up
simulation + optimisation

[CAV13, PDP14, DSD14, PDP15, Microprocessors & Microsystems 2016, Fundamenta Informaticae 2016]

o
%S

APTENZA Simulation Based Formal Verification of Onboard Software: A Case Study

IVERSITA DI ROMA



Model-Based System Verification @ MCLab

Disturbance Model (formal model of operational scenarios)

]
SyLVer

System Level Formal Verifier

o Bhttps://bitbucket.org/mclab/sylver-simulink-driver
LOAD - RUN - FREE -STORE

Simulator _h Omission Probabili
- OPtimisey Simulator i
Simulation Driver CPS Monit Monitor output
0

. Parallel (cluster) :

Simulator _}[ Omission Probability
Simulator
Driver
o

CPS . Monitor output
[ Model ]+{ Monitor }_’, 1 fail
= 0 ‘passl

Optimised
L—» Simulation
Campaign

4

Hardware-in-the-Loop Simulation (HILS)
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* Introduces Verification as a Service paradigm

* Supports companies in the CPS design business in their daily
veritication activities

* Allows keeping both the SUV model and the property to be
verified secret (Intellectual Property protection)

| property \

v

Private cluster

MATLAB
SIMULINK

& SAPIENZA
M UNIVERSITA DI ROMA

2 Disturbance model
(CMurphi syntax)

SyLVaaS

Verification

engineer
3 ) Optimised simulation
N campaigns for random

exhaustive parallel HILS
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Modelling the Operational Environment

Discrete event sequence u(t)

u(t)
0=3 rg
1

Monitor

|

no
disturb. _
disturbance event

SUV input: discrete event seq. Property to be verified:
* Associates to each (real) ta embedded in a continuous-time
disturbance event within [0, d] SUV monitor
* Differs from O (no disturbance) | |
in & finite number of time-points | | gyy: continuous-time SUV output: O at
...no system can withstand an infinite Input-state-output start; goes to ana
number of disturbances within a deterministic stays 1 as soon as
finite time dynamical system error Is detected
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Discrete Event Seqg’s & Disturbance Traces

We aim at Bounded System Level Formal Verification:

* Bounded time horizon: h
* Bounded time quantum between disturbances: t

Discrete event sequence (h,d) disturbance trace

> 00203000001000200
-—p
h
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Disturbance Model

* Detining all disturbance sequences the SUV should withstand
cannot be done manually for large CPSs

* Approach: use high-level modelling language to define
disturbance model as a Finite State Automaton

A tlny example function disturbanceModel(h)
¢ < 0; /* counter */
* Just one disturbance (fault), always : ;10;/2 %ﬂlle */
. . wilie 0
recovered within 4 seconds d < read(): t+ t+1:
* Atleast 5 seconds between two 3£ (cj> (i ttllllen ¢ c—1;
: . 1 = cn
consecutive disturbances if c> 0 then return ®:
* Time quantum t = 1 second t els'i/c% 4
: : return +/;
* Time horizon h = 6 seconds end
FSA recognising admissible disturbance traces l 000000~/ 010000~/ overall 8 adm
(we actually use the rich language of the 000001/ 010001® "
CMurphi model checker) 000010/ 01001 disturbance traces
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SyLVaasS Worktlow

k: Number of cores sim.camp 1
INn user cluster

sim.camp 2

sim.camp k

Disturbance
model

Master-slave Embarrassing
distributed approach parallelism

0P :
§ D P slice 1 =P

S
4: (o e — .
O 5 o B slice 2 =—rpb
O © O 5
S o =P S c : . —
0 S =2 @ : Computation of optimised
BDENG) ) = ; .
Z = *shce P |_|! random exhaustlye
' % simulation campaign
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Optimised Rnd Exhaustive Sim. Campaign

iﬁb\
Computation of optimised =

slice 1—| rnd exhaustive simulation F——{sim. campaign 1
campaigns

-«=xx embarrassing parallelism in SyLVaaS cluster «==..

~»
Computation of optimised J\'
slice k——! rnd exhaustive simulation ——sim. campaign k

campaigns /\

* Optimisation: use of load/store Sequence of simulator commands:
commands avoids revisiting previously * inj_run(e, f): inject disturbance and
visited simulation states as much as advance simulation
possible e store(/): store current sim. state into

 Exhaustiveness: all disturbance traces in mass memory
input slice are veritied e load(/): set current sim. state from

« Randomness: trace verification order is previously stored state
randomised o free(l): free stored sim. state stored )
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Optimised Rnd Exhaustive Sim. Campaign

Slice Simulation campaign (rnd+optimised)

1 021001 » init store(a)
2 022000 J \ load(a) inj_run(0,1) store(b)
3 022030 3 inj_ run(21r Qe
4 023110 inj_run(2,2
5 oz20 ni_run(3 2
6 03001‘0F Prefix labelling ; load(c) inj_run(1,37)
during generation inj_run(1,17)

(DFS —> free!) \ 5 load(b) free(b)

inj_run(3,37) inj_run(1,27)

Slice oOf labelled traces

1 c1d0e0flg

2 1070k 4/{

3 a0b2c2h0i3mOn [  Labels _
plair0s | | univocally

denote trace
6 b3yOzOo(1|30y prefixes

2ree(i) free(a)
inj_run(0,27)
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Embarrassingly Parallel Simulation

Simulation carried out on user private cluster (Intellectual Property protection)

sim.camp 1

sim.camp 2 Anytime bound to
Omission Probability:

sim.camp 3

1-minje [1,k] (%dOnei)

sim.camp k

MATLAB
SIMULINK
SUV model +

embedded
property monitor

k overall Simulink
instances on k cores
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A Case Study: Apollo

- =
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J-2 engif »s (5)
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Apollo Command and

Service Modules -.yaw engine

© 2009 Endliciopedia Britareics, |

main parachutes (3)
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A Case Study: Apollo

How it Would be Done Today!

Inverse of the
Inartia Matnx

]
>
. Pitch Acceleration
Yaw, Pitch and B — : [ , -, o
Roll Jets Command __ JTL_, L . = e SETT O o e R P
to Autopilot : . Sum I-m:rse times Integrator —_— !
orque m nge titudes
Hold at delt Reaction Jet Control Position
- a Inertia Matrix Initial Rate l:]
. n -
Three signals: = | s o T o Poston
& Momentum (H Matrix
Yaw, Pitch and N - P Mgy e—0m |
|
" vi | Omega
Roll sensors :.r.- L Y

Two Jet Nominal Two Jet Couplas
Phase Plane -
Prot = Inttialize Data Stores
-0 -0
oy =
Four Jet Two Jet or Write Var Ascent Single  Single Jet (Ascent) Wirite
Read data . PitchRoll Var
Four Jet Yaw Jots or Two Jet Yaw NofJots PitchRollJots
Couples Couples
Read the "News & Notes" article
about this model over the web.
(Double-Click Hara) Copyright 1990-2013 The MathWorks, Inc.

Safety: Yaw, Pitch and Roll close to 0
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A Case Study: Apollo

Three signals 7} Hownwouabopone Todeyt MATLAB
demuxed to o SIMULINK
disturb singularly =
.' EEDE .bm. L
: =
: = =

.\—0 Fanavemes

Ol BhE MOCE Over e wel

Copyrght 15602017 The MattwWoras, Inc

Checking
safety property

Monitor output

fail
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Experiments: Disturbance Models

Disturbance model:
* sensor faults repaired after 1 second
* 5 different sensor faults possible
* at most 3 faults in each trace
* at most 1 fault active at any time
* h=10sec, Tt = 500ms

Disturbance model CMurphi encoding

Ruleset d : INPUT_TYPE do

—> 8.9M dist. traces

Ruleset d : FAULTTYPE do

)
m‘ 5/ A\
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&

Rule "Inject Fault”
time_since_last_fault [d] = -1 &
no_fault_needs_repair () &
num_faults < MAXNUMFAULTS &
num_active_faults () < MAXNUM ACTIVE FAULTS
——> begin
time_since_last_fault [d] := 0;
num_faults := num_faults+1;
time_step () ;
end ;

Rule ”Repair Fault”

time_since_last_fault [d] = FAULT_DURATION
——> begin — repair fault d
time_since_last_fault [d] :=
time_step () ;
end ;
End;

INLSN

Rule "Inject Input Variation”
no_fault_needs_repair () &
num_inputs < MAXNUM.INPUTS &
is_input_variation_allowed ()

=—> begin

num_inputs =
time_step () ;
end ;

num_inputs + 1;

End;

Rule "No Disturbance”
no_fault_needs_repair () =>
begin time_step(); end;

Finalstate ”Correct Length”
no_faults () & num_faults <= MAXNUMFAULTS &
num_inputs <= MAXNUM_INPUTS;

Slmulation basead rormal vericaton of Unboard ooltware. A Lase otuay




Experiments: Infrastructure

SyLVaaS infrastructure:
* 1 orchestrator

SyLVaaS
orchestrator‘ -
[slave 16}

e 16 slaves

User private cluster:

* 8to 64 8-core machines
—> up to 512 Simulink parallel instances

MATLAB | gy | | XD | | =X | | =X
SIMULINK | gy | | =323 | | =233 | | =233

/%4 . , : o .
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Experiments (1)

SyLVaaS:
Parallel computation of random exhaustive optimised simulation
campaigns (16 cores):

k = #cores Computation of

In user cluster simulation campaigns
128 0:22:18
256 0:22:18
512 0:24:30

n:m:s

Disturbance | l » [ sim.camp 1
model
SyLVaaS —e—p | SIM.CAMP 2
k —_—_— —_—eeeeop | SIM.CAMP K
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Experiments (2)

Private user cluster:
Formal verification via embarrassing parallel execution of simulation
campaigns (k=128, 256, 512 parallel Simulink instances):

MATLAB

SIMULINK

k = #cores Execution of g

In user cluster simulation campaigns sim.camp 1 —» | =KXX3

128 726:53:25 S camp 2 _,[i-—fl

256 121:06:28 —_. bl 223

512 44:26:37 [é=g]

h:m:S m
SyLVaaS + Simulink MATLAB 1'?  completiontime ——
imulink SIMULINK |1 i —
SylLVaa 99% 4x o —
1% peedup > o|.2 o|.4 _ol.s ol.s 1

()
% SAPIENZA

coverage
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Conclusions

SyLVer: System Level Veritier

SyLVaaS: SyLVer as a Service

« Given formal model of operational environment
« Efficiently computes random exhaustive simulation campaigns
 Approach scales well: additional experiments with dist. models yielding 40M traces

« Campaigns run embarrassingly in parallel on all Simulink instances available on private
user cluster

 Campaigns optimise simulation activities (4x speedups) by storing/restoring
intermediate simulation states as much as possible (depending on available mass
memory space on user cluster)

« Graceful degradation: omission probability bound available anytime during verification

« Completion time estimation
available anytime during verification

~suva! @(Disturbanoe model
(CMurphi syntax)
« Both SUV model and property to Private cluster % hitp > ( SyLVaa$S

be verified kept secret X Verification
I — G engineer <
(Intellectual Property protection) —r @ @P S T
MaTIAB | campaigns for random
SIMULINK exhaustive parallel HILS
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Thank you!

Simulation

Based Formal Verification of

Cyber-physical Systems

SyLVaaS: System Level Verification as a Service
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