On Minimising the Maximum Expected Verification Time

Toni Mancini Federico Mari Annalisa Massini Ivano Salvo Enrico Tronci

Igor Melatti

<ロト <回ト < 注ト < 注ト = 注

Computer Science Department - Sapienza University of Rome Via Salaria 113, 00198 Roma - Italy http://mclab.di.uniroma1.it/

> **IWES 2017** Rome – September 7–8, 2017

System Level Formal Verification

System Level Formal Verification (SLVF): verify that the *whole* (i.e., software + hardware) system meets the given specifications Current workhorse: **Hardware In the Loop Simulation** (HILS)

SLFV may be effectively carried out by an exhaustive HILS:

- ► All relevant finite simulation scenarios are generated (generation phase)
- All simulation scenarios are simulated (verification phase)

Single verification phases are repeatedly performed, until the output is PASS

Motivations and Objectives

Main concern in a HILS campaign:

• Time needed by the whole verification activity may be huge

GOAL: minimise the time taken by the verification activity

< ロ > < 同 > < 三 > < 三 >

Idea

- ► **Define the simulation scenarios** by using the *disturbances* (faults, delays, etc.) to be injected into the *System Under Verification* (SUV)
- ► Reorder simulation scenarios so that in each verification phase the scenario witnessing the error occurs as soon as possible

Simulation of all scenarios is very time consuming

Problem: how to order scenarios to avoid the simulation of them all

Annalisa Massini (Sapienza University of Rome) On Minimising the Maximum Expected Verification Time

(日) (同) (日) (日)

Example of Simulation scenario

Fuel Control System model in the Simulink distribution

► Four sensors: throttle angle, speed, Oxygen in Exhaust Gas (EGO) and Manifold Absolute Pressure (MAP)

Disturbances

(uncontrollable inputs such as faults, delays, etc):

- $d_1 \rightarrow$ fault on EGO (repaired in 1s)
- $d_2 \rightarrow$ fault on MAP (repaired in 1s)
- $d_3 \rightarrow$ no fault event

Set of disturbances \mathcal{D} is $\{d_1, d_2, d_3\}$

Examples of simulation scenarios (finite sequence of disturbances):

- \bullet $\delta_1 = \langle d_1, d_3, d_2, d_3 \rangle$ (of length 4)
- $\delta_2 = \langle d_2, d_3, d_2 \rangle$ (of length 3)

< ロト < 同ト < ヨト < ヨト

September 8, 2017 5 / 21

Example of ASE and Simulation campaign

Each verification phase is performed as a simulation campaign:

 Simulation campaign – permutation of elements of a finite set A of simulation scenarios such that no scenario is a prefix of another one (Admissible System Environment – ASE)

In the Fuel Control System model we can consider:

- The set of disturbances $\mathcal{D} = \{d_1, d_2, d_3\}$
- Assuming that at most one fault can occur in the first position of simulation scenarios of length 3 → the simulation scenarios set is A = {δ₁, δ₂, δ₃} where:
 - $\bullet \ \delta_1 = \langle d_1, d_3, d_3 \rangle \qquad \qquad \delta_2 = \langle d_2, d_3, d_3 \rangle \qquad \qquad \delta_3 = \langle d_3, d_3, d_3 \rangle$
- The set of simulation campaigns Sim(A) consists of 3! = 6 elements
- Sim(\mathcal{A}) = { $\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6$ }, where:
 - $\begin{array}{ll} \bullet & \sigma_1 = \langle \delta_1, \delta_2, \delta_3 \rangle & \sigma_2 = \langle \delta_1, \delta_3, \delta_2 \rangle & \sigma_3 = \langle \delta_2, \delta_1, \delta_3 \rangle \\ \bullet & \sigma_4 = \langle \delta_2, \delta_3, \delta_1 \rangle & \sigma_5 = \langle \delta_3, \delta_1, \delta_2 \rangle & \sigma_6 = \langle \delta_3, \delta_2, \delta_1 \rangle \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Two-person Zero-sum Game

We model the verification phase as a two-person zero-sum game

- Player 1 (the verifier) chooses the (possibly probabilistic) ordering strategy in which scenarios will be simulated
- Player 2 (the *adversary*) chooses which scenarios witness an error (failing scenario) in a predefined scenarios ordering (e.g., the lexicographic one)
- ► The goal for the **verifier** is to **minimise** the verification time

Two-person Zero-sum Game

Thus

- ► The payoff for our game is the verification time
- ► Adversary objective → place the failing scenario so that such scenario is the last (after the verifier has reordered all scenarios)
- \blacktriangleright Verifier objective \rightarrow reorder the scenarios so that the failing one is the first

Error Injection Strategy

The error injection is the (probabilistic) strategy of the adversary player:

• An error injection strategy x, for an ASE A, is a function x: $A \to [0, 1]$ such that $\sum_{\alpha \in A} x(\alpha) = 1$

Example of Error Injection Strategy

- Consider the ASE $\mathcal{A} = \{\delta_1, \delta_2, \delta_3\}$
 - ► $x_1(\delta_1) = \frac{1}{3}$ $x_1(\delta_2) = \frac{1}{3}$ $x_1(\delta_3) = \frac{1}{3}$ ► $x_2(\delta_1) = 0$ $x_2(\delta_2) = 1$ $x_2(\delta_3) = 0$

Note that:

- Strategy x_2 consists in deterministically choosing δ_2 as the failing scenario
- x_2 is a pure strategy, whilst x_1 is not

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Simulation Strategy

The simulation strategy is the (probabilistic) strategy of the verifier player:

► A simulation strategy y, for an ASE \mathcal{A} , is a function y: $Sim(\mathcal{A}) \rightarrow [0, 1]$ such that $\sum_{\sigma \in Sim(\mathcal{A})} y(\sigma) = 1$

Example of Simulation Strategy

Consider the ASE $\mathcal{A} = \{\delta_1, \delta_2, \delta_3\}$ and $Sim(\mathcal{A}) = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6\}$

► $y_1(\sigma_i) = \frac{1}{6}, i = 1, ..., 6$ ► $y_2(\sigma_2) = \frac{1}{2}, y_2(\sigma_4) = \frac{1}{2}, y_2(\sigma_i) = 0, i = 1, 3, 5, 6$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Expected Verification Time

The **Expected Verification Time** (EVT) for the verification activity is the expected number of simulation scenarios to be simulated before hitting the one that witnesses the error

$$EVT(x,y) = \sum_{\delta \in \mathcal{A}} \sum_{\sigma \in Sim(\mathcal{A})} x(\delta) \chi(\sigma, \delta) y(\sigma)$$

where:

- $\chi(\sigma, \delta)$ is the position of simulation scenario δ in the simulation campaign σ
- x is the adversary error injection strategy
- y is the simulation strategy

The **Worst Case Expected Verification Time** (WCEVT) is the maximum EVT after any adversary choice

$$WCEVT(y) = \max_{x \in X} EVT(x, y)$$

Example of Expected Verification Time

Consider:

- The ASE $\mathcal{A} = \{\delta_1, \delta_2, \delta_3\}$
- The error injection strategy x_1 : $x_1(\delta_1) = \frac{1}{3}, x_1(\delta_2) = \frac{1}{3}, x_1(\delta_3) = \frac{1}{3}$
- ► The simulation strategy y_2 : $y_2(\sigma_2) = \frac{1}{2}$, $y_2(\sigma_4) = \frac{1}{2}$, $y_2(\sigma_i) = 0$, i = 1, 3, 5, 6, where $\sigma_2 = \langle \delta_1, \delta_3, \delta_2 \rangle$ and $\sigma_4 = \langle \delta_2, \delta_3, \delta_1 \rangle$

The Expected Verification Time is:

$$EVT(x_1, y_2) = \sum_{i=1}^{3} x_1(\delta_i) \chi(\sigma_2, \delta_i) y_2(\sigma_2) + \sum_{i=1}^{3} x_1(\delta_i) \chi(\sigma_4, \delta_i) y_2(\sigma_4) =$$
$$= \sum_{i=1}^{3} \frac{1}{3} \chi(\sigma_2, \delta_i) \frac{1}{2} + \sum_{i=1}^{3} \frac{1}{3} \chi(\sigma_4, \delta_i) \frac{1}{2} = \frac{1}{6} \sum_{i=1}^{3} i + \frac{1}{6} \sum_{i=1}^{3} i = 2$$

Theorem on MiniMax Expected Verification Time

Our main result (inspired by the Minimax Theorem of Von Neumann) provides:

- ▶ a lower bound for the verifier payoff, that is the minimum value for the Worst Case Expected Verification Time MiniMaxEVT
- the conditions for a simulation strategy to be optimal (attaining the optimal payoff)

Theorem

Let $\mathcal{A} = \{\delta_1, \dots, \delta_n\}$ be an ASE. Then the following statements hold:

- The value for the minimum WCEVT is $MiniMaxEVT = \frac{n+1}{2}$
- ► A simulation strategy y ∈ Y is optimal iff it satisfies the following constraints:

$$\sum_{t=1}^{n} t \sum_{\chi(\sigma, \delta_i)=t} y(\sigma) = \frac{n+1}{2}$$
 for $i \in [1, n]$

• A simulation strategy attaining the optimal payoff MiniMaxEVT is the uniform simulation strategy $\hat{y}(\sigma) = \frac{1}{n!}$

Optimal Simulation Strategies

The simulation strategy attaining the minimum WCEVT is not unique

There is an **infinite number of optimal simulation strategies**, that is any solution to the (feasibility) LP problem:

$$\begin{cases} \sum_{t=1}^{n} t \sum_{\chi(\sigma,\delta_i)=t} y(\sigma) = \frac{n+1}{2} \text{ for } i \in [1,n]\\ \sum_{\sigma \in \operatorname{Sim}(\mathcal{A})} y(\sigma) = 1\\ 0 \le y(\sigma) \le 1 \text{ for } \sigma \in \operatorname{Sim}(\mathcal{A}). \end{cases}$$

The set of solutions is a closed bounded convex polytope

Example

- Consider the ASE $\mathcal{A} = \{\delta_1, \delta_2, \delta_3\}$ and $Sim(\mathcal{A})$
- An optimal strategy has payoff $MiniMaxEVT = \frac{n+1}{2} = \frac{3+1}{2} = 2$
- Consider the two simulation strategies:

•
$$y_1: y_1(\sigma_i) = \frac{1}{6}, i = 1, \dots, 6$$

►
$$y_2$$
: $y_2(\sigma_2) = \frac{1}{2}, y_2(\sigma_4) = \frac{1}{2}, y_2(\sigma_i) = 0, i = 1, 3, 5, 6$

Both strategies are optimal

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Example (continued)

For simulation strategy y_1 :

- $y_1(\sigma) = \frac{1}{n!} = \frac{1}{6}$ for all $\sigma \in Sim(\mathcal{A})$
- WCEVT $(y_1) = 2$

For simulation strategy y_2 :

- y_2 consists in choosing at random $\sigma_2 = \langle \delta_1, \delta_3, \delta_2 \rangle$ or $\sigma_4 = \langle \delta_2, \delta_3, \delta_1 \rangle$
- Then EVT $(x, y_2) = \frac{1}{2} \sum_{i=1}^{3} x(\delta_i) \chi(\sigma_2, \delta_i) + \frac{1}{2} \sum_{i=1}^{3} x(\delta_i) \chi(\sigma_4, \delta_i)$
 - EVT $(x_1^*, y_2) = \frac{1}{2} [x_1^*(\delta_1) \chi(\sigma_2, \delta_1) + x_1^*(\delta_1) \chi(\sigma_4, \delta_1)] = \frac{1}{2} [1+3] = 2$
 - EVT $(x_2^*, y_2) = \frac{1}{2} [x_2^*(\delta_2) \chi(\sigma_2, \delta_2) + x_2^*(\delta_2) \chi(\sigma_4, \delta_2)] = \frac{1}{2} [2 + 2] = 2$ • EVT $(x_2^*, y_2) = \frac{1}{2} [x_2^*(\delta_3) \chi(\sigma_2, \delta_3) + x_2^*(\delta_3) \chi(\sigma_4, \delta_3)] = \frac{1}{2} [3 + 1] = 2$

► This implies $WCEVT(y_2) = \max_{x^* \in X^*} EVT(x^*, y_2) = 2 = WCEVT(y_1)$

・ロト ・ 一 ・ ・ ヨ ト ・ ヨ ・ うへつ

Monte Carlo-like Simulation

A prefix tree can be used to represent a simulation strategy

On-line scenario generation often rests on Monte Carlo-like approaches:

- At each simulation step a disturbance injection is chosen at random (for each simulation run)
- ► A Monte Carlo simulation strategy corresponds to a random walk on the disturbance tree associated to ASE A

A > 4

A Monte Carlo simulation strategy may not be optimal

Example of Non-Optimal Monte Carlo Simulation Strategy

- Consider the ASE $\mathcal{A} = \{\delta_1, \delta_2, \delta_3\}$, where $\delta_1 = \langle d_1, d_1 \rangle$, $\delta_2 = \langle d_3, d_1 \rangle$, $\delta_3 = \langle d_3, d_3 \rangle$
- An optimal strategy y should yield a payoff $MiniMaxEVT = \frac{n+1}{2} = 2$

 For the considered y (computing the conditional probability) we have: y(σ₁) = ¼, y(σ₂) = ¼, y(σ₃) = ¼, y(σ₄) = ¼, y(σ₅) = ¼, and y(σ₅) = ¼
Considering only pure error injection strategies x₁^{*}, x₂^{*}, x₃^{*}, we obtain: EVT(x₁^{*}, y) = ½, EVT(x₂^{*}, y) = ¼, and EVT(x₃^{*}, y) = ¼

• Thus WCEVT(y) = max $\left\{\frac{5}{3}, \frac{13}{6}, \frac{13}{6}\right\} = \frac{13}{6} > 2$

A Monte Carlo simulation strategy may not be optimal

Example of Optimal Monte Carlo Simulation Strategy

- ▶ Optimality sufficient condition: If for all δ ∈ A, P(δ) = 1/|A|, then the Monte Carlo simulation strategy y for (A, p) is optimal
- Consider the ASE $\mathcal{A} = \{\delta_1, \delta_2, \delta_3\}$, where $\delta_1 = \langle d_1, d_1 \rangle$, $\delta_2 = \langle d_3, d_1 \rangle$, $\delta_3 = \langle d_3, d_3 \rangle$

 $P(\delta_i) = \frac{1}{3}$ for all $\delta_i \in \mathcal{A}$, thus the Monte Carlo simulation strategy $y_{\mathcal{A}}$ is **optimal**

Conclusions and Future Work

We addressed the problem of identifying an ordering on the scenarios (sequences of disturbances) to be simulated so as to minimise the WCEVT

Our results can be summarised as follows:

- The minimum WCEVT is $\frac{n+1}{2}$, where *n* is the number of scenarios to simulate
- There is an infinite set of optimal simulation strategies (strategies for which the minimum WCEVT is attained), forming a bounded convex polytope
- Ordering simulation scenarios uniformly at random yields an optimal simulation strategy
- We show how to select probability distribution on disturbances to have an optimal simulation strategy for on-line Monte Carlo-based simulation settings

Future Work

▶ Search effective methods to generate on-line optimal simulation campaigns

Thanks

Annalisa Massini (Sapienza University of Rome) On Minimising the Maximum Expected Verification Time