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Why long-range indoor
capacifive sensinge

Indoor human localization and identification can enable
many automation and monitoring apps

Long range load-mode capacitive sensors are small,
pensive, easy to install and operate

enerally low accuracy and low range

Low noise measurement techniques (C ~ A / d2*3)
Sensor data post-processing:
= |mprove SNR (AC <0.01%)

= |Infer human location and behavior
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Measurement challenges

Conductive plate:

. A 7 _L
= Planar capacitors with VA >> d /( | Td
» C=¢A/d
| Dielectric
= | gad-mode capacitors with d >> VA
» C~A/d2s ) 410" measurement results for 16x16 cm plate

*  measurement data

d (meters) >> VA (tenths of cm):

C(d) = AD + A1*1/d + A2*1/d? + A3*1/d] 1

= Very low AC (< 0.01%) 212 |
= Very high measurement sensitivity © 24}

= | oW noise sensifivity

capacitance

» Good noise rejection
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= Control Q flow, set V thresholds

easure f ~ 1 / fime-to-V threshold

= Very high impedance input

Base band measurement:
charge-to-voltage => freq.
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= Susceptible to EM noise 4™
V noise => f jitter - for
- . . q = A\
= Difficult noise filtering S 1o/
(8]
Low SNR overall S -20
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Carrier modulation:
pohase and amplitude

Vi correlated to carrier amplitude and phase shifts due to
Xcs Changes

Effective carrier noise filtering (stable known frequency)

tput signal can be amplified before measurement (lower
uvantization noise)

AWGN

Overal Difference 4" Order Butterworth BP Filter
Improved i Q=>5, fc = 10kHz
SNR and

sensitivity

= u!A
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10 kHz
3 VP'P

V,, (t) = A Sin(ot+0)

Carrier modulation:

phase

= Qufput can be amplified

Improved SNR and sensitivity

i 4m Order
Butterworth
! BP Filter
' Q=5,

. fc = 10kHz

= Carrier noise can be filtered well
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Human identification
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Localization using machine
learning classification

~ | 60cm |

= Room localization experiment using ML

‘\?1 I/,,_\pE P9 /h\:lﬂ 3

classification and the “noisy” sensors
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= Train k-NN, Naive Bayes, SVN to classify 16

o—<P D—f€
. . . BNO, | {0
room locations using sensors of different sizes 18 Iw/ 1o/ Lo/ Hoss &
N ' J WV
= Test algorithms classification accuracy MZ wé e
. . - — -
Naive Bayes performed best, especially for T T -
the largest sensor size (16 x 16 cm) el
. Path Detected by NB algorithm . Path Detected by NB algorithm . Path Detected by NB algorithm
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= Data acquired using different body
angles
= “Acquisitions weeks or months apart

» Tested performance of most (48)
Weka collection algorithms

= Training using with different set sizes

= Testing with unseen data sets

» Performance measurement

memory requirements
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Performance of machine
learning localization (1)

=
Sensor B

Sensor D

wogg

J

Door with
metal frame

Main electric
switch board

a Fridge [-4lcm

Metal closet

48cm

= Accuracy, error, precision, recall, frain effort, classification effort,
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Performance of machine
learning localization (2)
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Using advanced machine
learning algorithms

PRI,

w» Classification (1 out of 16 locations) has a significant
quantization error (15cm on average with 60cm grid) and
may not be suitable for all applications

= Can use neural networks to directly convert sensor outputs to
YY) location within room, with improved precision

Recurrent neural networks (with feedback) can also reduce
the need for filtering (the network “learns” the expected
speed range of the person moving around the room)

= However, NNs and RNNs have much higher computational
complexity: 100K neurons are required to achieve a mean
distance error of 10cm
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Energy requirements of
machine learning algorithms

The computational load of a neural network evaluation for
human localization can easily be TMFLOP

The requirements to frack millions of people exceed 1
ExaFLOP

ergy requirements are becoming the bottleneck for large
data centers, hence FPGASs are being used to accelerate
computationally infensive workloads

The ECOSCALE H2020 project n. 671632 is aimed at enabling
the use of FPGAs in data centers

The machine learning algorithms for human localization using
capacitive sensors will be used as a design driver in
ECOSCALE
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Conclusions

» Capacitive sensing may provide the low cost indoor sensing
needed to enable many smart applications

= Combined with other sensing techniques, it may conftribute to
ine a platform that enables to install apps on the home

eeds effective techniques to reject and reduce noise

Intensive data processing may improve performance

= | ow power analog and digital processors (uP, FPGA) and
communication essential for low exploitation costs
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