INSTITUTE

OF COMMUNICATION,

INFORMATION

AND PERCEPTION)

TECHNOLOGIES e ®
S | Scuola Superiore e tzs

7 Ve P ?, y
S5) Sant Anna Real-Time Systems Laboratory

Semi-Partitioned Scheduling
of Dynamic Real-Time
Workload

Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo
Scuola Superiore Sant’Anna

ReTiS Laboratory
Pisa, ltaly

Task model

Real-time workload consists of a set of cyclic tasks,
each characterized by:

C. worst-case computation time
— C, T. activation perdiod
Task utilizat = = ! . .
asic utllization U, T D. relative deadline

Each task generates an infinite sequence of instances
(jobs), activated periodically or sporadically

Jobs are fully preemptive
generj\c Jjob

Dynamic real-time workload

Real-time tasks can join and leave the system
at runtime:

corel core 2

core3 core 4

time ¢ time +A

No a-priori knowledge of the workload

» Cloud computing, multimedia, real-time databases, ...

Multiprocessor Scheduling

Global
Scheduling

- J

Full migration

() Auto. load balance
() High efficiency
@ High overhead
Q Difficult to analyze

?etis

Partitioned

4)

Scheduling
- J

No migration

&) No load balance
&) Low efficiency
@ Low overhead
Q Easy to analyze

task
splitting

=t

@‘
—_
@]
-
@]
25

-

-

Semi-Partitioned
Scheduling

J

Only some tasks migrate

() Load balance
() High efficiency
Q Low overhead
Q Easy to analyze

Semi-Partitioned Scheduling
Anderson et al. (2005)

! Builds upon partitioned scheduling

1 Tasks that do not fit in a processor are split
INtfo sub-tasks

[
\
\
\
31
T3 may experience a migration
across the two processors

CPU | CPU 2

C=D Splitting

Burns et al. (2010)

I Task is split iInfo multiple chunks, with the first n-1
chunks at zero-laxity (C = D)

Original task
1, = (30, 100, 100)

Zero-laxity chunk
v, = (20, 20, 100)

migration

Last chunk t D7
", = (10, 80, 100)

—\

A very important result
Brandenburg and Gul (2016)

“Global Scheduling Not Required”

Empirically, near-optimal
schedulability (99%+) achieved with
simple, well-known and low-overhead

techniques |
Based on C=D Semi-Partitioned Scheduling

Performance achieved by applying multiple
clever heuristics (off-line)

Concelved for static workload

?etis

Semi-Partitioned Scheduling

0 More predictable execution

0 Reuse of results for uniprocessors

0 Excellent worst-case performance

0 Low overhead

0 A-priori knowledge of the workload

0 High complexity for optimal splitting

HOW TO MAINTAIN THE BENEFITS
OF SEMI-PARTITIONED
SCHEDULING WITHOUT

REQUIRING ANY OFF-LINE PHASE?

How to partition and split tasks online?

?etis 9

This work

1 This work considers dynamic workload consisting of
reservations (budget, period)

This model is compliant with Linux (SCHED_DEADLINE),
hence usable in billions of devices around the world

! The workload Is executed under C=D
Semi-Partitioned Scheduling

J Budget splitting

zero-laxity chunk { -
]

} remaining chunk

C=D Budget Splitting

7= (budget = 30, period = 100)
to be split

migration

How to find a safe zero-
laxity budgete

How to find the zero-laxity budget?
Burns et al. (2010)

Iterative process based on QPA (Quick Processor-
demand Analysis) with high complexity (ho bound
provided by the authors)

Also used by Brandenburg and Gul (201 6)

al
Unsuitable to be performed online! Y

yes

Reduce (i = QPA - END

no

Fixed-point iteration -

Potentially looping for a high number of times

?etis 12

Our approach: approximated C=D

Main goal: Compute a safe bound for
the zero-laxity budget in linear fime

INn this work we proposed an approximate methoad

based on solving a system of inequalities

Constants depending on
static task-set parameters

C'=D'< | |
o > = mm(Kl,...,@)
C' =D < order of
\ o number of tasks

13

Our approach: approximated C=D

How have we achieved the
closed-form formulation?
Approach based on approximate demand-bound

functions
dbf(t)
Some of them similar to those |

proposed by Fisher et al. (2006) /

[
———————————
=

gl
+ theorems to obtain a closed-form formulation

The derivation of the closed-form solution has been
also mechanized with the Wolfram Mathematica tool

?etis 14

Approximated C=D: Extensions

The approximation can be improved by:

Extension 1: Iterative algorithm that refines
the bound

Repeats for a fixed — [

We found that 5|gn|f|cant |mprovemenfs
can be achieved with just two iterations

the approximate dbfs

dbf(t) 1 /
Add a fixed number k _

.
e
. M
o
o

.
.
.
*

of discontinuities N — O (k*ﬂ)

?etis 15

Experimental Study

Measure the utilization loss infroduced by
our approach with respect to the (exact)
Burns et al.’s algorithm

Burns et al.’s C=D
Task-set - T
" Unew— UW

Qur approach

Tested almost 2 Million of task sets over wide
range of parameters

?etis

Representative Results

——— BASELINE —+— EXT1 - - - EXT2 —— EXT1 + EXT2
g . 4 tasks
2 Extension 1 is effective for
'g 0 low utilization values
E ! Extension 2 is effective for
=2} high utilization values
% "01 02 03 04 05 06 07 08] Utilization loss ~2% w.r.1.

The lower the better U the exact algorithm

13 tasks

Increasing CPU lege————T——T—7———T—7—
6 .

The average utilization
loss decreases as the 4| .
number of fasks increases 2

AVG Utilization Loss (%)

U

Representative Results

——— BASELINE —+— EXT1 - - - EXT2 —&— EXT1 + EXT2
§ Utilization = 0.4
~ 8 | | | | | | | | e . .
L Utilization loss of the baseline
g, approach reaches very low
g values forn > 12
=y
-
O 0
= 2

n
Utilization = 0.6

8

6

Same trend observed

for all utilization values 4
2
0

2 4 6 &8 10 12 14 16 18 20
n

AVG Utilization Loss (%)

HOW TO APPLY ON-LINE
SEMI-PARTITIONING TO
PERFORM LOAD BALACING?

Why do not use classical approaches?

Existing task-placement algorithms for semi-
partitioning would require reallocating many
tasks (they were concelived for static workload)
le
ls d: le
11 11
12 13 l3 12
CPU 1 CPU 2 CPU 1 CPU 2
Old allocation New allocation

Impracticable to be performed on-line:
the previous allocation cannot be ignored!

?etis 20

The problem

How to achieve high schedulability
performance with

= avery limited number of re-allocations;
and

= keeping the mechanism as simple as
possiblee

Focus on practical applicability

Proposed approach
First try a sinhplet boihedalabtehtrytaisplie.g., first-fit)

M an

T3

v

CPU 1 CPU 2

L |
AR

Proposed approach
JHow to splite

EONEE—

take the maximum zero-laxity
budget across the processors

max Cg

CPU 1 CPU 2 CPU 3 CPU 4

Proposed approach
JAdmission of a new reservation

1) Allocate the zero-laxity part

-< - according to the previous rule

2) Allocate the remaining part
using a bin-packing heuristics

O(m * nMAX)

Ts

CPU 1 CPU 2 CPU 3 CPU 4

Proposed approach
JEXit of a reservation

- [g] Try to recompact split
- — reservations to favor the

admission of future workload

O(nMAX)
ls
T3 T
CPU 1 CPU 2 CPU 3 CPU 4

Recall: a property of C=D Scheduling is that there can be
at most m split tasks

Experiments

——— G-EDF —¢— P-EDF-BF - - - P-EDF-FF 4 P-EDF-WF —¢— C=D-LB —a— C=D-LB+EXT

up to 40% of improvement over
G-EDF

8 CPUs, utilization variance =0.3

|

¥ ‘
\.‘.‘
\.‘
—

90 |-

— G A A
Q ” B S

AVG Accepted Load (%)

0.1 02 03 04 05 0.6 \7

: up to 25% of improvement over
The higher the better >_EDF

Increasing average task
utilization

Conclusions

We proposed a linear-time method for computing
an approximation of the C=D splitting algorithm

The approximation algorithm has been used to
develop load-balacing mechanisms

Two large-scale experimental studies have been
conducted:

The splitting algorithm showed an average
utilization loss < 3%

The Load Balancing mechanisms allow keeping
the system load >87% with improvements up to
40% over G-EDF and up to 25% to P-EDF

Future Work

FInding better heuristics for load balancing

Ad-hoc mechanism for handling scheduling

transients

Support for elastic reservation to tavor the

admission of new workload

Synchronization issues

Implementation in a real-time operating

systems (e.g., Linux under SCHE

?etis

D

DEA

DLINE)

28

?etis

Thank you!

Daniel Casini
daniel.casini@sssup.it

29

