
1

Semi-Partitioned Scheduling
of Dynamic Real-Time

Workload
Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo

Scuola Superiore Sant’Anna
ReTiS Laboratory

Pisa, Italy

2

Task model
Real-time workload consists of a set of cyclic tasks,
each characterized by: Ci worst-case computation time

Ti activation perdiod
Di relative deadline

CiCi

Ti Ti

Di Di

§ Each task generates an infinite sequence of instances
(jobs), activated periodically or sporadically

§ Jobs are fully preemptive

…

generic job

Ui =
Ci
Ti

Task utilization

3

Dynamic real-time workload
Real-time tasks can join and leave the system
at runtime:

No a-priori knowledge of the workload

§ Cloud computing, multimedia, real-time databases, …

core1 core 2

core3 core 4

task task

time t time t+D

4

Multiprocessor Scheduling

Global
Scheduling

Partitioned
Scheduling

Semi-Partitioned
Scheduling

𝜏" 𝜏# 𝜏$

𝜏%

𝜏&𝜏'

𝜏(

𝜏" 𝜏# 𝜏$

𝜏%

𝜏&𝜏'

𝜏(

Full migration No migration Only some tasks migrate

task
splitting

Auto. load balance
High efficiency
High overhead
Difficult to analyze

No load balance
Low efficiency
Low overhead
Easy to analyze

Load balance
High efficiency
Low overhead
Easy to analyze

5

Semi-Partitioned Scheduling

q Builds upon partitioned scheduling

q Tasks that do not fit in a processor are split
into sub-tasks

Anderson et al. (2005)

CPU 1 CPU 2

𝜏" 𝜏%

𝜏() 𝜏())
𝜏(

𝜏()

𝜏())

𝜏(may experience a migration
across the two processors

6

C=D Splitting
Burns et al. (2010)

20

10

100

80

migration

q Task is split into multiple chunks, with the first n-1
chunks at zero-laxity (C = D)

t’3 = (20, 20, 100)

t’’3 = (10, 80, 100)

Zero-laxity chunk D’i = C’i

t3 = (30, 100, 100)

D’’i = Ti – D’i

30

Last chunk

Original task

7

Conceived for static workload

A very important result
Brandenburg and Gül (2016)

Empirically, near-optimal
schedulability (99%+) achieved with

simple, well-known and low-overhead
techniques

“Global Scheduling Not Required”

q Based on C=D Semi-Partitioned Scheduling

q Performance achieved by applying multiple
clever heuristics (off-line)

8

Semi-Partitioned Scheduling

More predictable execution

Reuse of results for uniprocessors

Excellent worst-case performance

Low overhead

A-priori knowledge of the workload

High complexity for optimal splitting

9

HOW TO MAINTAIN THE BENEFITS
OF SEMI-PARTITIONED
SCHEDULING WITHOUT

REQUIRING ANY OFF-LINE PHASE?

How to partition and split tasks online?

10

This work
q This work considers dynamic workload consisting of

reservations (budget, period)

This model is compliant with Linux (SCHED_DEADLINE),
hence usable in billions of devices around the world

q The workload is executed under C=D
Semi-Partitioned Scheduling

q Budget splitting
budget

zero-laxity chunk

remaining chunk

11

C=D Budget Splitting

20

10

100

80

migration

𝜏)	=	(20,	20,	100)

𝜏))=	(10,	80,	100)How to find a safe zero-
laxity budget?

𝜏=	(budget =	30,	period =	100)
to	be	split

12

How to find the zero-laxity budget?
Burns et al. (2010)

q Iterative process based on QPA (Quick Processor-
demand Analysis) with high complexity (no bound
provided by the authors)

q Also used by Brandenburg and Gül (2016)

QPAReduce 𝐶𝑖
no

yes

START

END

Pseudo-polynomial
(exponential if U=1)

Fixed-point iteration

Potentially looping for a high number of times

Unsuitable to be performed online!

13

Constants depending on
static task-set parameters

Our approach: approximated C=D

q In this work we proposed an approximate method
based on solving a system of inequalities

	𝐶) = 𝐷) ≤ 𝐾"

𝐶) = 𝐷) ≤ 𝐾E

	𝐶) = min(𝐾", … , 𝐾E)…

Main goal: Compute a safe bound for
the zero-laxity budget in linear time

order of
number of tasks

14

Our approach: approximated C=D

qApproach based on approximate demand-bound
functions

Some of them similar to those
proposed by Fisher et al. (2006)

q+ theorems to obtain a closed-form formulation
The derivation of the closed-form solution has been
also mechanized with the Wolfram Mathematica tool

t

dbf(t)

How have we achieved the
closed-form formulation?

15

Approximated C=D: Extensions

qExtension 1: Iterative algorithm that refines
the bound

Approximated C=D END
Repeats for a fixed

number k of refinements

qExtension 2: Refinement on the precisions of
the approximate dbfs

The approximation can be improved by:

Add a fixed number k
of discontinuities

O(k*n)

O(k*n)
t

dbf(t)

We found that significant improvements
can be achieved with just two iterations

16

Experimental Study
Measure the utilization loss introduced by
our approach with respect to the (exact)
Burns et al.’s algorithm

Tested almost 2 Million of task sets over wide
range of parameters

Burns et al.’s C=D

Our approach

Task-set
				𝑈JKL	M	∗ 𝑈JKL)

17

Representative Results

Extension 1 is effective for
low utilization values

Extension 2 is effective for
high utilization values

The lower the better

4 tasks

13 tasks

The average utilization
loss decreases as the

number of tasks increases

Increasing CPU load

Utilization loss ~2% w.r.t.
the exact algorithm

18

Representative Results

Utilization loss of the baseline
approach reaches very low

values for n > 12

Same trend observed
for all utilization values

Utilization = 0.4

Utilization = 0.6

19

HOW TO APPLY ON-LINE
SEMI-PARTITIONING TO

PERFORM LOAD BALACING?

20

Why do not use classical approaches?
qExisting task-placement algorithms for semi-

partitioning would require reallocating many
tasks (they were conceived for static workload)

𝜏% 𝜏(

𝜏"

CPU 1 CPU 2

𝜏#
𝜏' 𝜏$

𝜏%𝜏(

𝜏"𝜏#
𝜏'

𝜏$

CPU 1 CPU 2
New allocationOld allocation

Impracticable to be performed on-line:
the previous allocation cannot be ignored!

21

The problem
How to achieve high schedulability
performance with

§ a very limited number of re-allocations;
and

§ keeping the mechanism as simple as
possible?

Focus on practical applicability

22

𝜏#𝜏#

Proposed approach

𝜏%
𝜏(

𝜏"

CPU 1 CPU 2

First try a simple bin packing heuristics (e.g., first-fit)If not schedulable, try to split

𝜏#
𝜏#)

𝜏#))

𝜏#)
𝜏#))

23

Proposed approach
qHow to split?

take the maximum zero-laxity
budget across the processors

𝜏%
𝜏(

𝜏"

CPU 1 CPU 2

𝜏#

𝜏'

CPU 3 CPU 4

𝜏&
𝜏$

𝐶O
)," 𝐶O

),% 𝐶O
),(𝐶O

),#

max𝐶O)
𝜏O

𝜏O)

𝜏O))

24

Proposed approach
qAdmission of a new reservation

𝜏%
𝜏(

𝜏"

CPU 1 CPU 2

𝜏#

𝜏'

CPU 3 CPU 4

𝜏&
𝜏$

1) Allocate the zero-laxity part
according to the previous rule

2) Allocate the remaining part
using a bin-packing heuristics

𝜏O
𝜏O)

𝜏O))

𝜏O)
𝜏O))

𝑂(𝑚 ∗ 𝑛UVW)

25

𝜏(

CPU 2

𝜏#

𝜏'

CPU 3 CPU 4

𝜏&
𝜏$

Proposed approach
qExit of a reservation

𝜏%

𝜏"

CPU 1

Try to recompact split
reservations to favor the

admission of future workload

Recall: a property of C=D Scheduling is that there can be
at most m split tasks

𝜏O
𝜏O)

𝜏O))

𝜏O)
𝜏O))

𝜏O

𝑂(𝑛UVW)

26

Experiments

The higher the better

Increasing average task
utilization

up to 40% of improvement over
G-EDF

8 CPUs, utilization variance = 0.3

up to 25% of improvement over
P-EDF

27

Conclusions
q We proposed a linear-time method for computing

an approximation of the C=D splitting algorithm

q The approximation algorithm has been used to
develop load-balacing mechanisms

q Two large-scale experimental studies have been
conducted:

§ The splitting algorithm showed an average
utilization loss < 3%

§ The Load Balancing mechanisms allow keeping
the system load >87% with improvements up to
40% over G-EDF and up to 25% to P-EDF

28

Future Work
q Finding better heuristics for load balancing

q Ad-hoc mechanism for handling scheduling
transients

q Support for elastic reservation to favor the
admission of new workload

q Synchronization issues

q Implementation in a real-time operating
systems (e.g., Linux under SCHED_DEADLINE)

29

Thank you!
Daniel Casini
daniel.casini@sssup.it

