

Semi-Partitioned Scheduling of Dynamic Real-Time Workload

Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo Scuola Superiore Sant'Anna

ReTiS Laboratory

Pisa, Italy

Task model

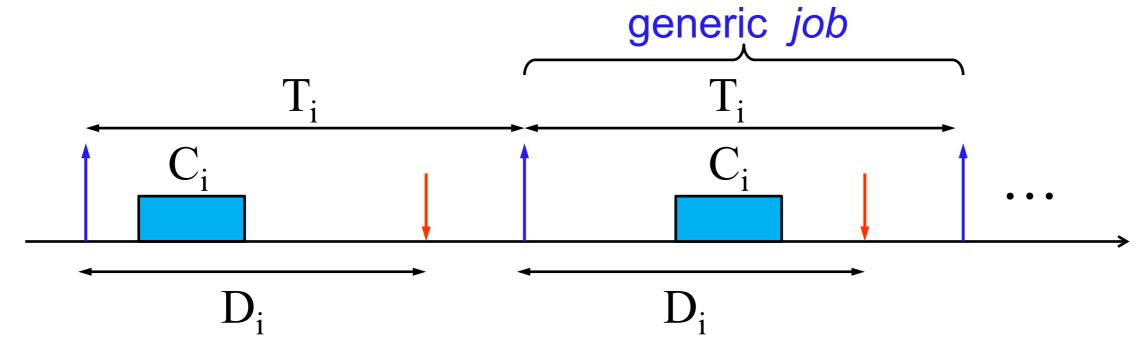
Real-time workload consists of a set of cyclic tasks,

each characterized by:

Task utilization
$$U_i = \frac{C_i}{T_i}$$

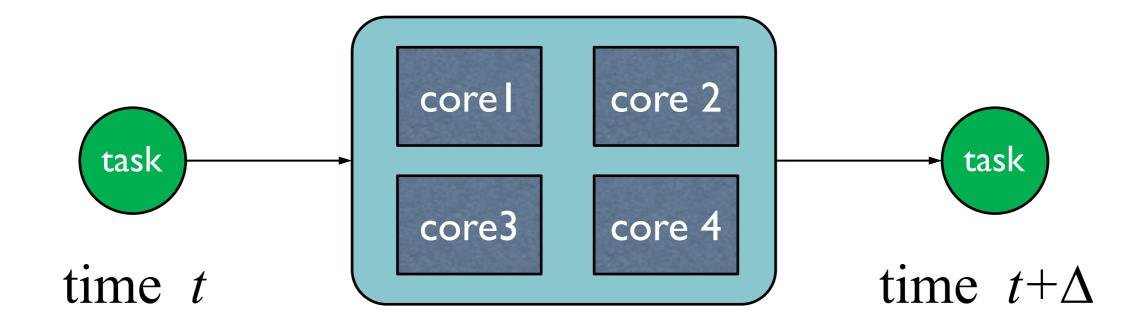
 C_i worst-case computation time T_i activation perdiod D_i relative deadline

- Each task generates an infinite sequence of instances (jobs), activated periodically or sporadically
- Jobs are fully preemptive



Dynamic real-time workload

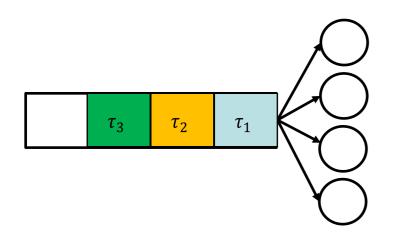
Real-time tasks can join and leave the system at runtime:

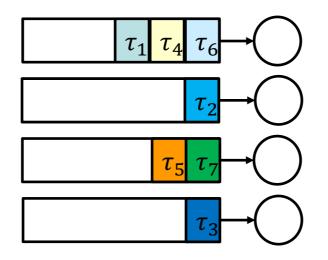


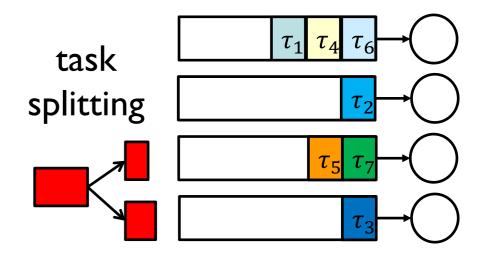
No a-priori knowledge of the workload

Cloud computing, multimedia, real-time databases, ...

Multiprocessor Scheduling







Global Scheduling

Full migration

- Auto. load balance
- High efficiency
- Migh overhead
- O Difficult to analyze

Partitioned Scheduling

No migration

- No load balance
- Low efficiency
- C Low overhead
- Easy to analyze

Semi-Partitioned Scheduling

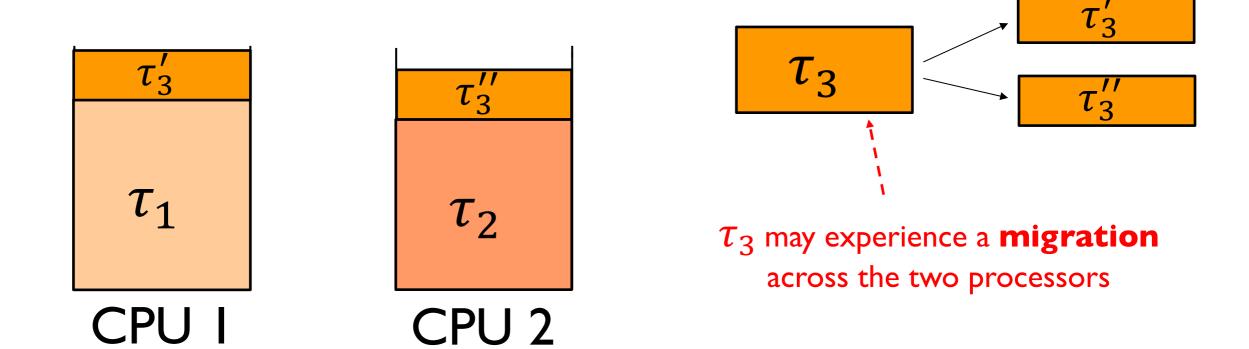
Only some tasks migrate

- Load balance
- High efficiency
- Low overhead
- Easy to analyze

Semi-Partitioned Scheduling

Anderson et al. (2005)

- Builds upon partitioned scheduling
- Tasks that do not fit in a processor are split into sub-tasks



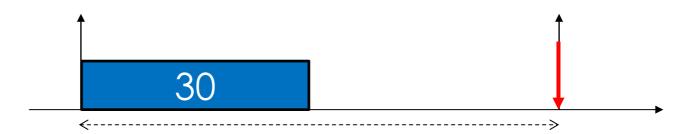
C=D Splitting

Burns et al. (2010)

Task is split into multiple chunks, with the first n-1 chunks at zero-laxity (C = D)

Original task

$$\tau_3 = (30, 100, 100)$$

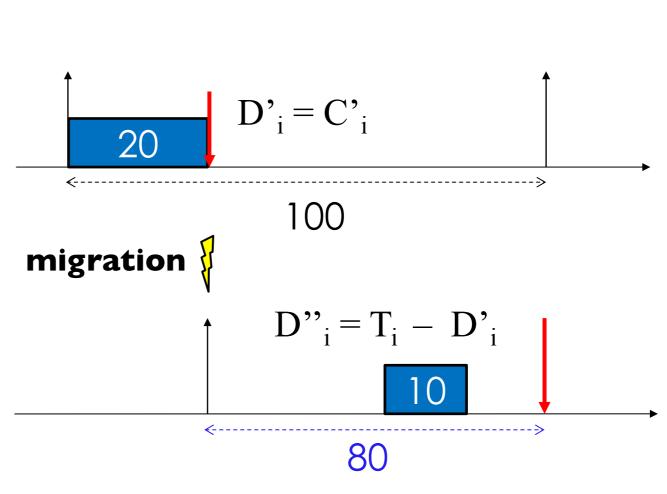


Zero-laxity chunk

$$\tau'_3 = (20, 20, 100)$$

Last chunk

$$\tau$$
"₃ = (10, 80, 100)



A very important result

Brandenburg and Gül (2016)

"Global Scheduling Not Required"

Empirically, near-optimal schedulability (99%+) achieved with simple, well-known and low-overhead

- Lechniques
 Based on C=D Semi-Partitioned Scheduling
- Performance achieved by applying multiple clever heuristics (off-line)

Conceived for static workload

Semi-Partitioned Scheduling

More predictable execution

Reuse of results for uniprocessors

Excellent worst-case performance

Low overhead

A-priori knowledge of the workload

High complexity for optimal splitting

HOW TO MAINTAIN THE BENEFITS OF SEMI-PARTITIONED SCHEDULING WITHOUT REQUIRING ANY OFF-LINE PHASE?

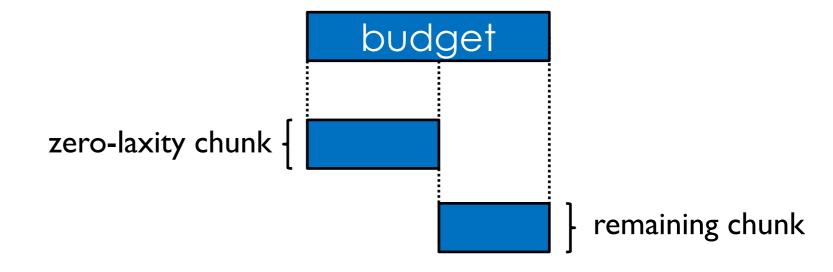
How to partition and split tasks online?

This work

This work considers dynamic workload consisting of reservations (budget, period)

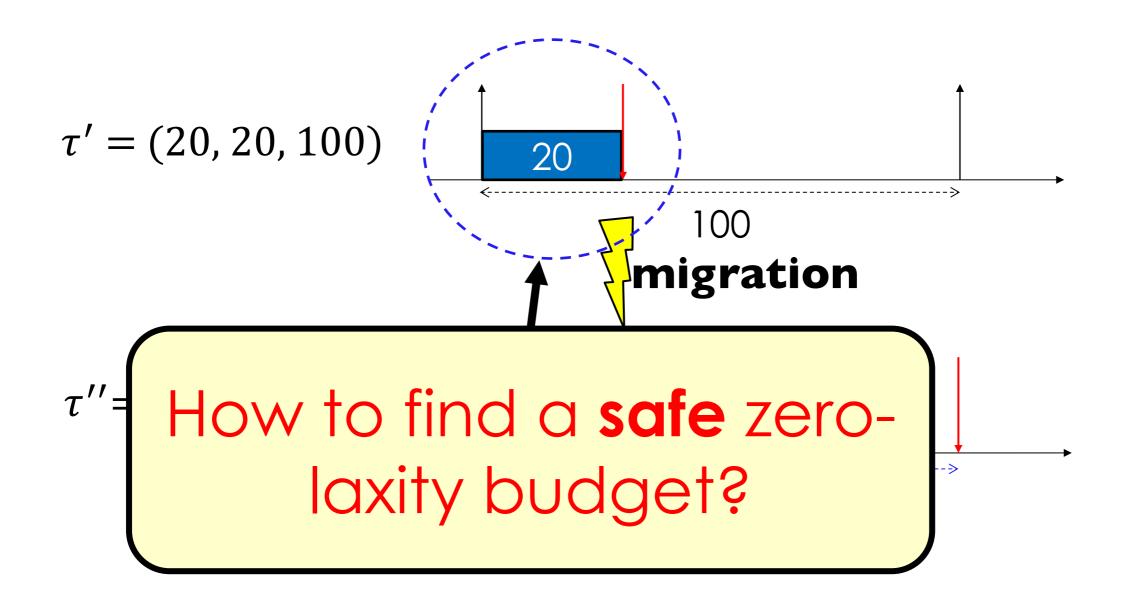
This model is compliant with Linux (SCHED_DEADLINE), hence usable in billions of devices around the world

- The workload is executed under C=D Semi-Partitioned Scheduling
 - Budget splitting



C=D Budget Splitting

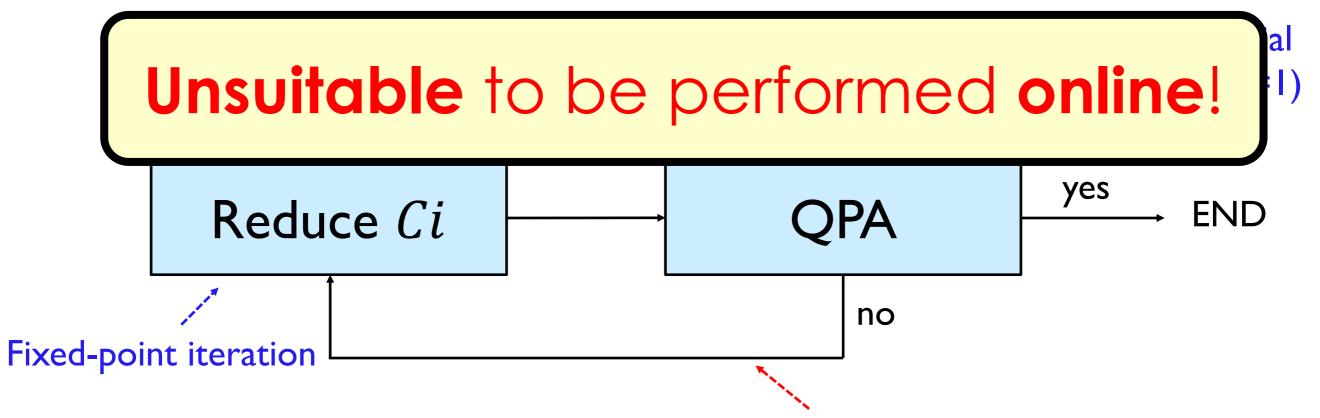
 τ = (budget = 30, period = 100) to be split



How to find the zero-laxity budget?

Burns et al. (2010)

- Iterative process based on QPA (Quick Processordemand Analysis) with high complexity (no bound provided by the authors)
- Also used by Brandenburg and Gül (2016)

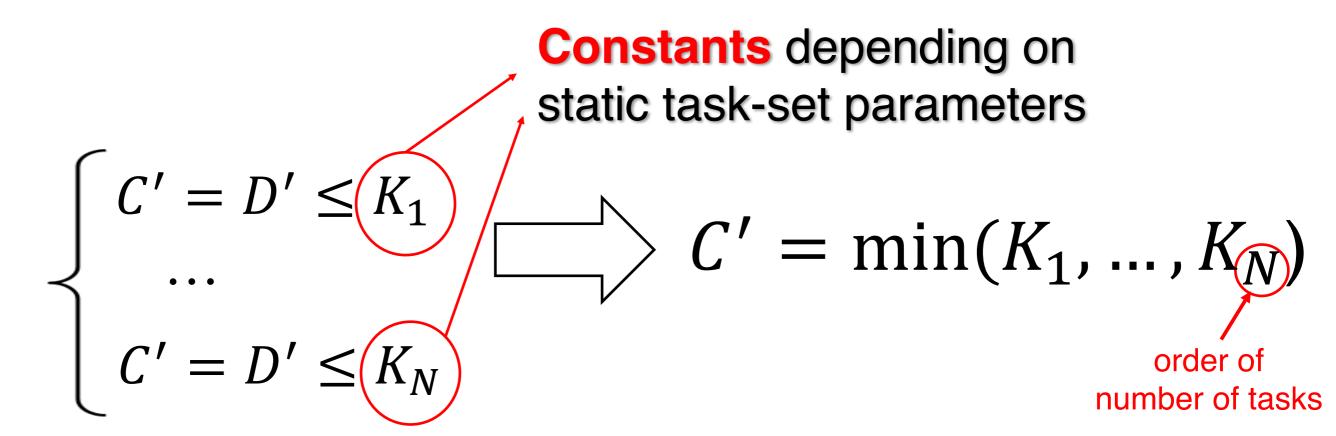


Potentially looping for a high number of times

Our approach: approximated C=D

Main goal: Compute a safe bound for the zero-laxity budget in linear time

In this work we proposed an approximate method based on solving a system of inequalities

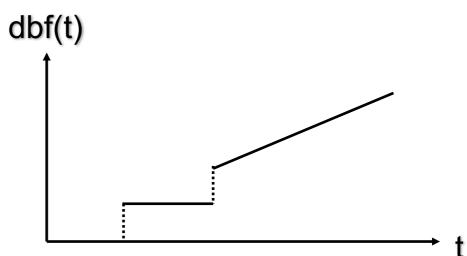


Our approach: approximated C=D

How have we achieved the closed-form formulation?

Approach based on approximate demand-bound functions

Some of them similar to those proposed by *Fisher et al.* (2006)



+ theorems to obtain a closed-form formulation

The derivation of the closed-form solution has been also mechanized with the Wolfram Mathematica tool

Approximated C=D: Extensions

The approximation can be improved by:

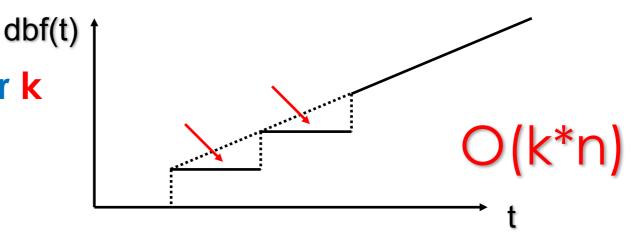
Extension 1: Iterative algorithm that refines the bound

Repeats for a fixed

We found that significant improvements can be achieved with just two iterations

the approximate dbfs

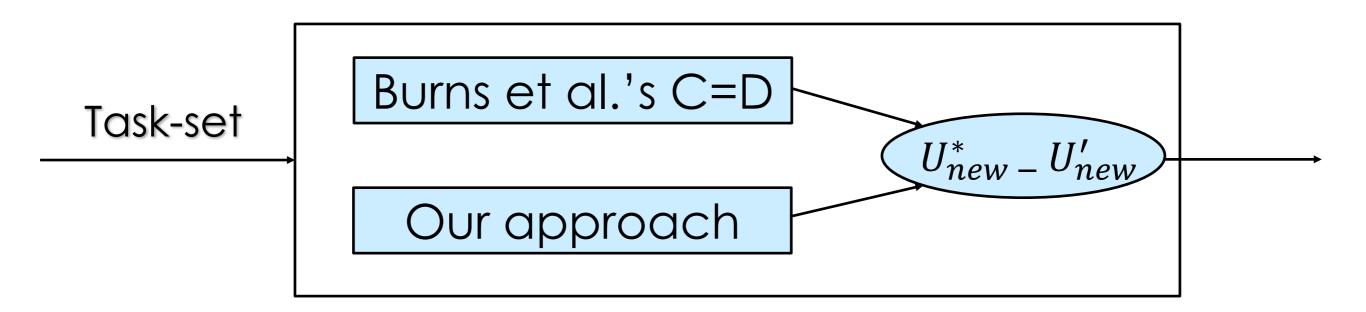
Add a fixed number k of discontinuities



Petis

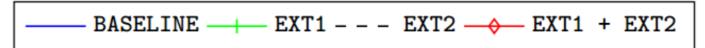
Experimental Study

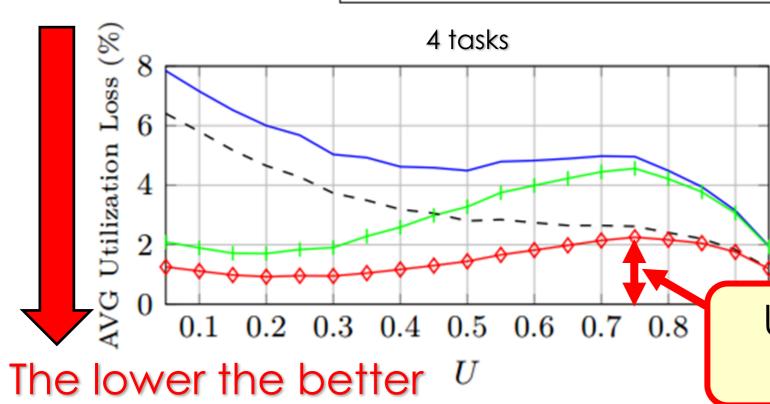
Measure the utilization loss introduced by our approach with respect to the (exact) Burns et al.'s algorithm



Tested almost 2 Million of task sets over wide range of parameters

Representative Results



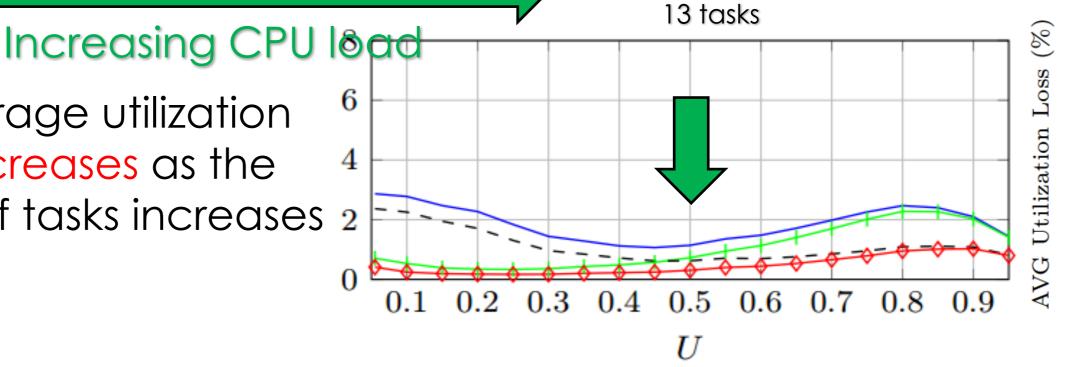


Extension 1 is effective for low utilization values

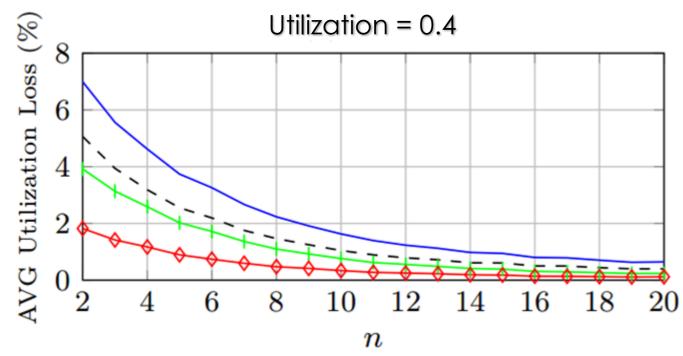
Extension 2 is effective for high utilization values

Utilization loss ~2% w.r.t. the exact algorithm

The average utilization loss decreases as the number of tasks increases 2

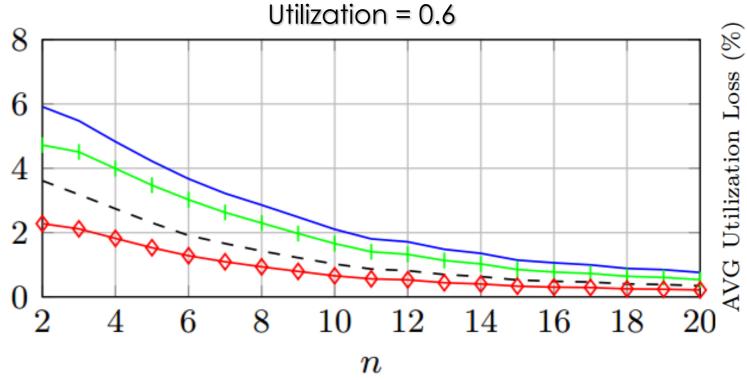


Representative Results



Utilization loss of the baseline approach reaches **very low** values for n > 12

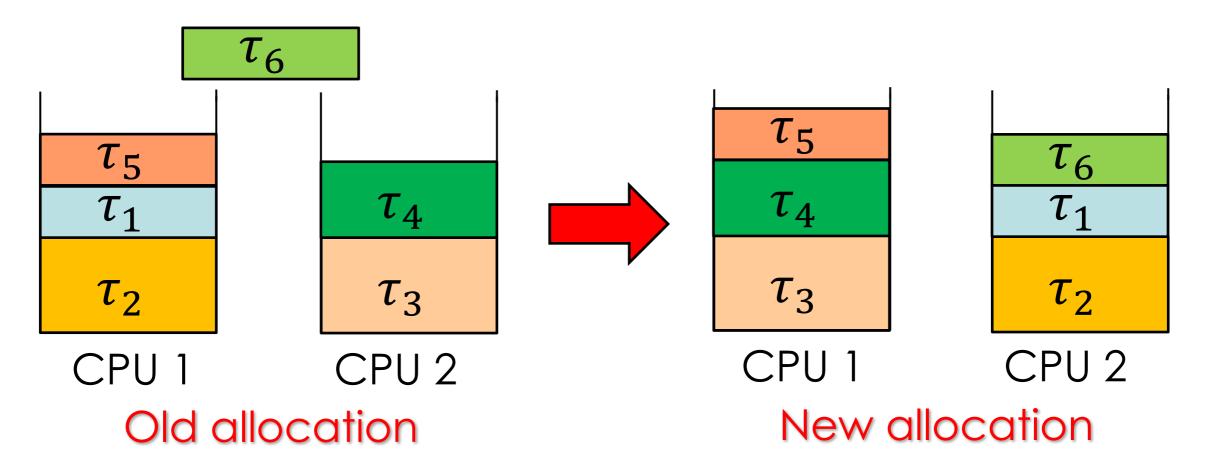
Same trend observed for all utilization values



HOW TO APPLY ON-LINE SEMI-PARTITIONING TO PERFORM LOAD BALACING?

Why do not use classical approaches?

Existing task-placement algorithms for semipartitioning would require reallocating many tasks (they were conceived for static workload)



Impracticable to be performed on-line: the previous allocation cannot be ignored!

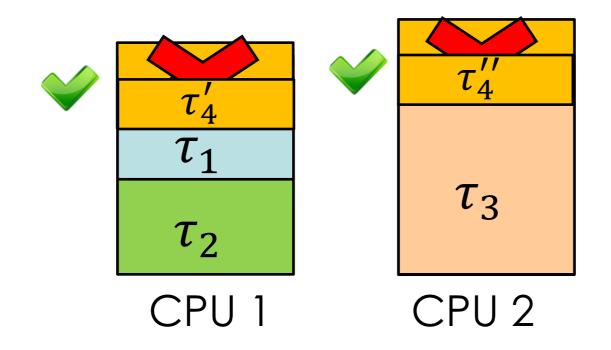
The problem

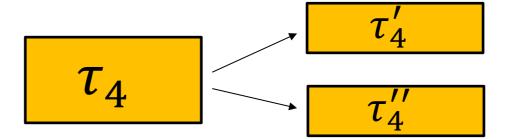
How to achieve high schedulability performance with

- a very limited number of re-allocations;
 and
- keeping the mechanism as simple as possible?

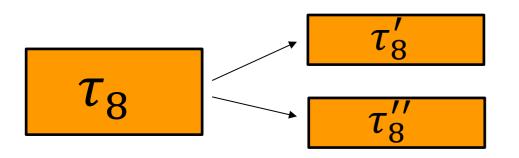
Focus on practical applicability

First try a simplet bomedalable heryrtotisplie.g., first-fit)



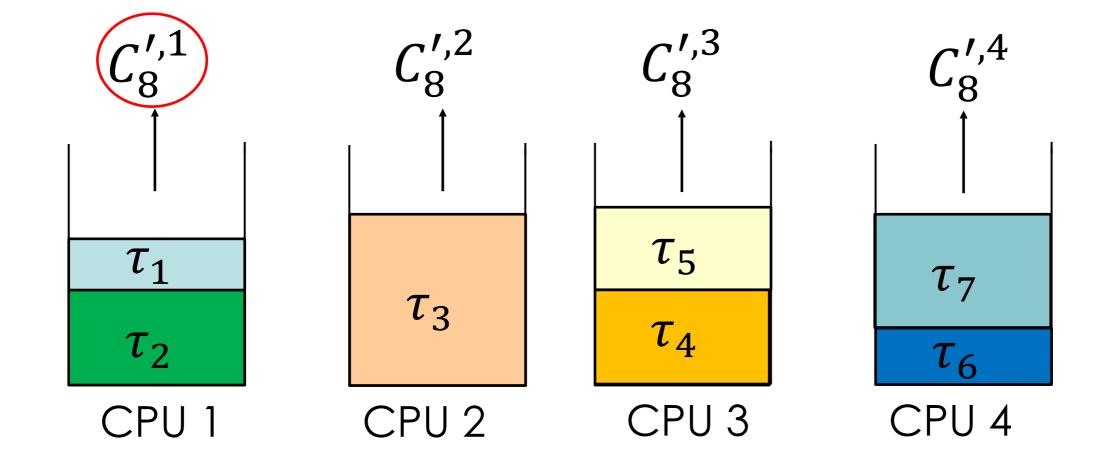


☐ How to split?

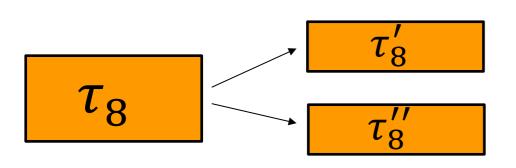


take the maximum zero-laxity budget across the processors

 $\max C_8'$

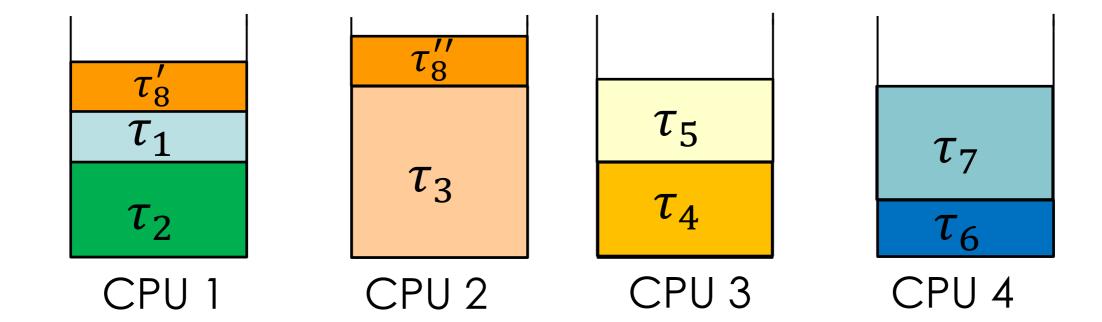


Admission of a new reservation

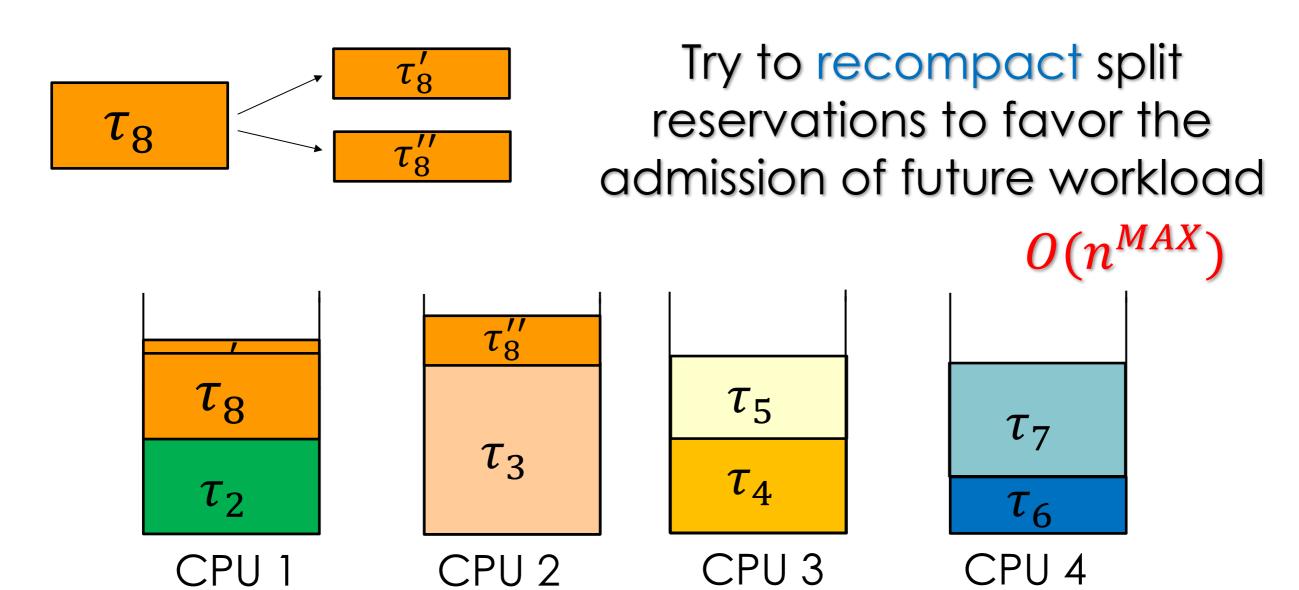


- 1) Allocate the zero-laxity part according to the previous rule
- 2) Allocate the remaining part using a bin-packing heuristics

$$O(m*n^{MAX})$$



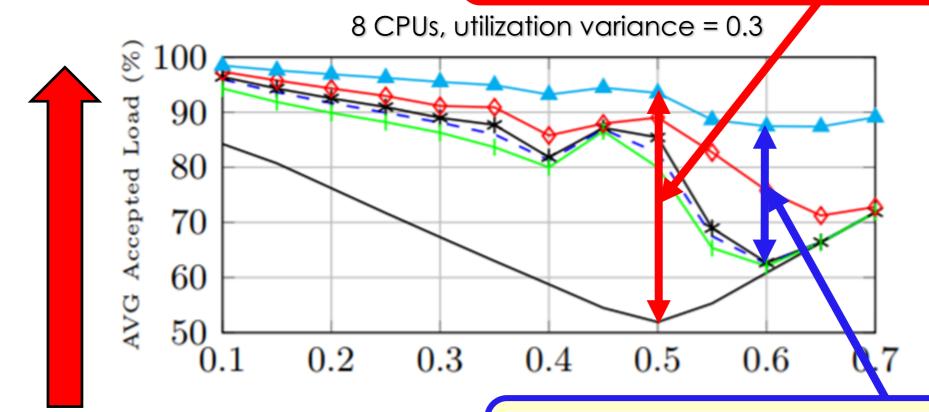
☐ Exit of a reservation



Recall: a property of C=D Scheduling is that there can be at most m split tasks

Experiments

up to **40%** of improvement over G-EDF



The higher the better

up to **25%** of improvement over P-EDF

Increasing average task utilization

Conclusions

- We proposed a linear-time method for computing an approximation of the C=D splitting algorithm
- The approximation algorithm has been used to develop load-balacing mechanisms
- Two large-scale experimental studies have been conducted:
 - The splitting algorithm showed an average utilization loss < 3%
 - The Load Balancing mechanisms allow keeping the system load >87% with improvements up to 40% over G-EDF and up to 25% to P-EDF

Future Work

- Finding better heuristics for load balancing
- Ad-hoc mechanism for handling scheduling transients
- Support for elastic reservation to favor the admission of new workload
- Synchronization issues
- Implementation in a real-time operating systems (e.g., Linux under SCHED_DEADLINE)

Thank you!

Daniel Casini daniel.casini@sssup.it

