
ENABLING LOW-COST AND LIGHTWEIGHT
ZERO-COPY OFFLOADING ON HETEROGENEOUS

MANY‐CORE ACCELERATORS:
THE PULP EXPERIENCE

ERC GRANT N° 291125

IWES17
September 07-08, 2017,

Rome (Italy)

Alessandro Capotondi (alessandro.capotondi@unibo.it)
Andrea Marongiu

Luca Benini
University of Bologna

ENABLING LOW-COST AND LIGHTWEIGHT
ZERO-COPY OFFLOADING ON HETEROGENEOUS

MANY‐CORE ACCELERATORS:
THE PULP EXPERIENCE

Alessandro Capotondi (alessandro.capotondi@unibo.it)
Andrea Marongiu

Luca Benini
University of Bologna

ERC GRANT N° 291125

IWES17
September 07-08, 2017,

Rome (Italy)

TLTR: Low-cost Unified Virtual
Memory Support on Embedded SoC

Heterogenous Manycores

Ever-increasing demand for computational power has recently led to radical
evolution of computer architectures

Two design paradigms have proven effective in increasing performance and
energy efficiency of compute systems

> Many-cores
> Architectural Heterogeneity

A common template is one where a powerful general-purpose processor
(the host) is coupled to one or more

a many-core accelerators

Titan Cray X47

Opteron 6274
16C 2.2GHz
Cray Gemini
NVIDIA K20x

Tianhe-2

Xeon E5-2692
12C 2.2GHz
TH Express-2
Intel Xeon Phi

HPC /
SERVER

Heterogenous Manycores
Gyoukou

Xeon D-1571
16C 1.3Ghz
Infiniband EDR
PEZY-SC2

Gyoukou

Xeon D-1571
16C 1.3Ghz
Infiniband EDR
PEZY-SC2

Kalray
MPPA256

NVIDIA
Tegra X1

Titan Cray X47

Opteron 6274
16C 2.2GHz
Cray Gemini
NVIDIA K20x

Tianhe-2

Xeon E5-2692
12C 2.2GHz
TH Express-2
Intel Xeon Phi

TI KeystoneII

HPC /
SERVER

SoC

Heterogenous Manycores
True in every computing domain and at every scale!

Execute control
intensive and
sequential tasks.

Fine-grained
offloading of highly
parallel tasks.

 Communicate via coherent shared memory
 IOMMU for hUMA in high-end systems

Heterogenous Manycores

 CUDA 6 Unified Virtual Memory
 Pascal Architecture and Tegra X series

Execute control
intensive and
sequential tasks.

Fine-grained
offloading of highly
parallel tasks.

> Communicate via coherent shared memory
> IOMMU for hUMA in high-end systems

What about low-power, embedded systems?

Heterogenous Manycores

Embedded Heterogenous SoCs

Kalray
MPPA256

Adapteva

STHORM

Many-Core Accelerators

TI KeystoneII
Xilinx Zynq

Altera Arria

DSP/ASIC/FPGA
Accelerators

Embedded Heterogenous SoCs

Coherent virtual
memory for host.

Accelerator can only access contiguous section in
shared main memory, no virtual memory.

copy-based approach

Embedded Heterogenous SoCs

Pros
• Do not require specific HW
• Cheap and low-power

Cons
• Overheads for copying data from/to the dedicated memory
• Complex data structures require ad-hoc transfer
• Performance issue on not-paged sections

Coherent virtual
memory for host.

Accelerator can only access contiguous section in
shared main memory, no virtual memory.

copy-based approach

Embedded Heterogenous SoCs

Pros
• Do not require specific HW
• Cheap and low-power

Cons
• Overheads for copying data from/to the dedicated memory
• Complex data structures require ad-hoc transfer
• Performance issue on not-paged sections

Coherent virtual
memory for host.

Accelerator can only access contiguous section in
shared main memory, no virtual memory.

copy-based approach

Contributions

 Lightweight mixed HW/SW managed IOMMU for UVM support
 PULP architecture

 IOMMU Implementation

 GNU GCC Toolchain Extensions for offloading to PULP accelerator
 Compiler Extensions

 Runtime/Libraries Extensions

 UVM Experimental evaluation on OpenMP offloading

PULP - An Open Parallel Ultra-Low-Power Processing-Platform
This is a joint project between the Integrated Systems Laboratory (IIS) of ETH Zurich
and the Energy-efficient Embedded Systems (EEES) group of UNIBO to develop an
open, scalable Hardware and Software research platform with the goal to break
the pJ/op barrier within a power envelope of a few mW.

The PULP platform is a multi-core platform achieving leading-edge energy-efficiency
and featuring widely-tunable performance.

cluster-based
scalable

silicon-proven
OpenRISC/RISC-V

PULP - An Open Parallel Ultra-Low-Power Processing-Platform
This is a joint project between the Integrated Systems Laboratory (IIS) of ETH Zurich
and the Energy-efficient Embedded Systems (EEES) group of UNIBO to develop an
open, scalable Hardware and Software research platform with the goal to break
the pJ/op barrier within a power envelope of a few mW.

The PULP platform is a multi-core platform achieving leading-edge energy-efficiency
and featuring widely-tunable performance.

not only ULP power envelop!

cluster-based
scalable

silicon-proven
OpenRISC/RISC-V

PULP as heterogeneous programmable accelerator emulator

Host: Dual-Core ARM Cortex-A9 running full fledged Ubuntu 16.04
Accelerator: 8 core – PULP Fulmine cluster (www.pulp-platform.org)

Lightweight UVM
Unified Virtual Memory

Goals:
 Sharing of virtual address pointers

 Transparent to application developer

 Zero-copy offload, performance predictability

 Low complexity, low area, low cost

 Non-intrusive to accelerator architecture

Mixed Hardware/Software Solution:
> Input/output translation lookaside buffer (IOTLB)

> Special-purpose TRYX Control register

Requires:
> Compiler extension to insert tryread/trywrite operation

> Kernel-level driver module

Accelerator

Host

Shared Memory

Remapping Address Block (RAB):
> Virtual-to-physical address translation

> Per-port private IOTLBs, shared configuration interface

• No hardware modifications to the processing elements.
• Portable RAB miss handling routine on the host.
• Optimized for common case: overhead of 8 cycles.

Lightweight UVM
Unified Virtual Memory

OpenMP

▲ De-facto standard for shared memory programming

▲ Support for nested (multi-level) parallelism  good for clusters

▲ Annotations to incrementally convey parallelism to the compiler 
increased ease of use

▲ Based on well-understood programming practices (shared memory, C
language)  increases productivity

“OpenCL for programming shared memory multicore CPUs” by Akhtar Ali , Usman Dastgeer , Christoph Kessler

OpenMP

▲ De-facto standard for shared memory programming

▲ Support for nested (multi-level) parallelism  good for clusters

▲ Annotations to incrementally convey parallelism to the compiler 
increased ease of use

▲ Based on well-understood programming practices (shared memory, C
language)  increases productivity

▲ Since Specification 4.0 OpenMP support Heterogenous Execution
Model based on offloads!

At the moment GCC supports OpenMP
offloading ONLY to:
• Intel Xeon Phi
• Nvidia PTX (only through OpenACC)

The compiler outlines the code within the target region and generates a binary version for
each accelerator (multi-ISA)

The runtime libraries are in charge to:
• manage the accelerator devices
• map the variables
• run/wait execution of target regions

OpenMP target example
void vec_mult()
{

double p[N], v1[N], v2[N];

pragma omp target map(to: v1, v2)\
map(from: p)

{
pragma omp parallel for

for (int i = 0; i < N; i++)
p[i] = v1[i] * v2[i];

}
}

1. Initialize target device
2. Offload target image
3. Map TO the device mem
4. Trigger execution target region
5. Wait termination
6. Map FROM the device mem

• Added PULP as target accelerator
– Enabled OpenRISC back-end as OpenMP4 accelerator supported

ISA
– Created ad-hoc lto-wrapped linker tool for PULP offloaded region

(pulp-mkoffload)

• Enabled UVM (zero-copy) support for PULP
– Added new SSA pass to protect usage of shared mapped variables

between the accelerator and the host

GNU GCC - Extensions

Added PULP as target accelerator (1)
vertex {

unsigned int vertex_id, n_successors;
float pagerank, pagerank_next;
vertex ** successors;

} * vertices;

#pragma omp target map(tofrom: vertices, n_vertices)
(i = 0; i < n_vertices; i++) {

vertices[i].pagerank = compute(...);
vertices[i].pagerank_next = compute_next(...);

pr_sum += (vertices + i)->pagerank;

((vertices+i)->n_successors == 0) {
pr_sum_dangling += (vertices + i)->pagerank;

}
} ORIGINAL CODE

1
2

3

GCC
(arm-linux-gnueabihf-gcc)

ld

lto-wrapper

pulp-mkoffload
or1kl-none-gcc

cc1-lto
ld

cc1

src.object
(ARM-ISA)

.text

.text.target._omp_fn.0
{ .data, .bss, etc.}
.gnu.offload_vars
.gnu.offload_funcs

.gnu.offload_lto_target._omp_fn.0

.gnu.offload_lto_.{decls, refs, etc.}

LTO.object (GIMPLE)

cc1
LinkTimeOptimization
representation of target
regions are appended to
the object file

Added PULP as target accelerator (2)

GCC
(arm-linux-gnueabihf-gcc)

ld

lto-wrapper

pulp-mkoffload
or1kl-none-gcc

cc1-lto
ld

cc1

src.object
(ARM-ISA)

.text

.text.target._omp_fn.0
{ .data, .bss, etc.}
.gnu.offload_vars
.gnu.offload_funcs

.gnu.offload_lto_target._omp_fn.0

.gnu.offload_lto_.{decls, refs, etc.}

LTO.object (GIMPLE)

Added PULP as target accelerator (2)

GCC
(arm-linux-gnueabihf-gcc)

ld

lto-wrapper

pulp-mkoffload
or1kl-none-gcc

cc1-lto
ld

cc1

src.object
(ARM-ISA)

.text

.text.target._omp_fn.0
{ .data, .bss, etc.}
.gnu.offload_vars
.gnu.offload_funcs

.gnu.offload_lto_target._omp_fn.0

.gnu.offload_lto_.{decls, refs, etc.}

LTO.object (GIMPLE)

PULP
Syslibs

HAL

libgomp

src.bin
(ARM-ISA)

.text

.text.target._omp_fn.0
{ .data, .bss, etc.}
.gnu.offload_vars
.gnu.offload_funcs

.text
{ .data, .bss, etc. }
.gnu.offload_vars
.gnu.offload_funcs
.target._omp_fn.0

target.bin
(or1k ISA)

.gnu.offload_images

Linking
All LTO.objects are passed by
the lto-wrapper to
pulp-mkoffload

<pulp-mkoffload>
• Compile the target region

to the accelerator ISA
• Link the pre-compiled

accelerator (PULP syslib)
• Append to the “host” binary

whole .gnu.offload_image

Compiler UVM support for PULP

GCC
(arm-linux-gnueabihf-gcc)

ld

lto-wrapper

pulp-mkoffload
or1kl-none-gcc

cc1-lto
ld

cc1

OpenMP
Expansion

RAB
STMT mark

PULP_RAB_Pass

SSA-opt1

......

SSA

S
S
A

p
a
s
s
e
s

.

I
P
A

p
a
s
s
e
s ipa_write_passes

cc1

(i=0; i < (&n_vertices); i++) {

vertex_i = (&vertices) + i*20; // &vertices[i]

p_rank = compute(...);
(&vertex_i->pagerank,p_rank);
(&vertex_i->pagerank_next,compute_next(...));

pr_sum = p_rank + pr_sum;
((&vertex_i->n_successors) == 0)

pr_sum_dangling = p_rank + pr_sum_dangling;
}

PULP_RAB_Pass

1

2

3

Compiler UVM support for PULP

GCC
(arm-linux-gnueabihf-gcc)

ld

lto-wrapper

pulp-mkoffload
or1kl-none-gcc

cc1-lto
ld

cc1

OpenMP
Expansion

RAB
STMT mark

PULP_RAB_Pass

SSA-opt1

......

SSA

S
S
A

p
a
s
s
e
s

.

I
P
A

p
a
s
s
e
s ipa_write_passes

cc1

(i=0; i < (&n_vertices); i++) {

vertex_i = (&vertices) + i*20; // &vertices[i]

p_rank = compute(...);
(&vertex_i->pagerank,p_rank);
(&vertex_i->pagerank_next,compute_next(...));

pr_sum = p_rank + pr_sum;
((&vertex_i->n_successors) == 0)

pr_sum_dangling = p_rank + pr_sum_dangling;
}

PULP_RAB_Pass

1

2

3
OpenMP Expansion Pass:
annotate the statements containing the
first use of every map variable.

New SSA PULP_RAB_PASS:
traverses use-def chains to determine
which uses of the value/address
of the annotated variables need to be
instrumented

Full SW stack overview

Pass virtual
address pointers.

Protect accesses to
virtual address
pointers.

RAB miss
handling

Wake up sleeping
cores.

Extension

Only protect pointers passed by the host.

Tight integration into
compiler.

PULP‐plugin

Objective: while UVM’s greatest advantage is simplified
programmability we want evaluate the advantage of UVM on
performance.

Benchmarks:
• memcpy (MEM): representative example for heavily memory-

bound, streaming applications with regular access pattern to
shared memory.

• pointer chasing (PC): is representative of graph-processing
applications with highly irregular access patterns, like Page-
Rank, Breadth-First Search, clustering, Nearest Neighbor
Search.

• random forest traversal (RFT): is representative of irregular
applications for regression, classification problem solving, and
pattern recognition

Experimental setup

On regular applications UVM executes avg. 1.6×
faster.

Capacity RAB misses when the data size exceeds
the TLB capacity limits the speedup at 1.79×

Results (1)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

128 256 384 512

S
p
e
e
d
u
p

(
U
V
M

v
s

C
o
p
y
-
B
a
s
e
d
)

Data Size [KiB]

MEM

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10240 12740 15240 17740 20240
Graph Size [KiB]

PC

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

12 14 16
Tree Depth

RFT

0.2
Cycles/Byte

20
Cycles/Byte

PC shows a slowly but steadily increasing speedup (up
to 1.4× for the considered data sets)

Small graphs are penalized by the higher RAB handling
costs compared to regular applications like MEM

Results (2)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

128 256 384 512

S
p
e
e
d
u
p

(
U
V
M

v
s

C
o
p
y
-
B
a
s
e
d
)

Data Size [KiB]

MEM

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10240 12740 15240 17740 20240
Graph Size [KiB]

PC

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

12 14 16
Tree Depth

RFT

0.2
Cycles/Byte

20
Cycles/Byte

RFT reaches 4.11× and 2.85× speedup, for CCRs
equal to 20 and 0.2, respectively

The higher speedups are due to the fact that in
copy-based a lot of data is copied that is
(potentially) never accessed.

Results (3)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

128 256 384 512

S
p
e
e
d
u
p

(
U
V
M

v
s

C
o
p
y
-
B
a
s
e
d
)

Data Size [KiB]

MEM

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10240 12740 15240 17740 20240
Graph Size [KiB]

PC

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

12 14 16
Tree Depth

RFT

0.2
Cycles/Byte

20
Cycles/Byte

We presented a RTL-proven mixed HW/SW lightweight IOMMU
for low-power embedded many-core accelerator.

We presented a full implementation of OpenMP 4 on GCC for
PULP architecture.

We extended the toolchain at compiler and runtime level to
enable Unified Virtual Memory support achieved by a low-cost, low-
area, IOTLB infrastructure.

UVM enables, with smaller programming effort, a performance
gain compare standard copy-based offloading mechanisms.

Conclusion

Current status:
• Make the first OpenMP-ready,

RISC-V accelerator!
• bring UVM support to FPGA

accelerators (custom or HLS
flow, SDSoC, ecc…)

Looking ahead
• release Open-Source (near

future)
• Looking at ultra large scale of

accelerator (tens, hundreds
clusters)

Conclusion (2)

Contact us! If you are interested
to use it as research platform or to
join as collaborator!

http://www.pulp-platform.org/

Work supported by

ERC GRANT N° 291125

Thank You!
Questions? Answers?

Alessandro Capotondi (alessandro.capotondi@unibo.it)

How many parallel
programming models?

Proprietary
Programming modelsKhronos Standard for

Heterogeneous ComputingStandard
for shared memory system

Academic
Proposals

• OmpSS
• OpenHMPP
• SparkCL, many-others

GCC Runtime library extensions

On host side:
• Modified the standard libgomp

to remove forced device to/from
host data transfer

• Created two libgomp plugin for
the PULP accelerator

On PULP side:
• Customized – already existing –

libgomp to manage offload
requests

Libgomp
<host>

GOMP_OFFLOAD_run
GOMP_OFFLOAD_async_run
GOMP_OFFLOAD_dev2dev
GOMP_OFFLOAD_get_name
GOMP_OFFLOAD_get_caps
GOMP_OFFLOAD_get_type
GOMP_OFFLOAD_get_num_devices
GOMP_OFFLOAD_init_device
GOMP_OFFLOAD_fini_device
GOMP_OFFLOAD_version
GOMP_OFFLOAD_load_image
GOMP_OFFLOAD_unload_image
GOMP_OFFLOAD_alloc
GOMP_OFFLOAD_free
GOMP_OFFLOAD_dev2host
GOMP_OFFLOAD_host2dev

pulp-vmem-plugin.so

pulp-cmem-plugin.sopulp-cmem-plugin.so

• Contiguous Memory Allocator (CMA):
– Pre-allocate a contiguous kernel-space buffer at boot time.
– Apply a constant offset for virtual-to-physical address translation.
– Zero-copy

3

Memory Sharing in Embedded Systems (1)

• Drawbacks:
• Requires custom kernel module to expose the contiguous

memory to user-space and to get the physical address.
• High latency, no guarantees on the availability
• Contiguous Buffer is un-cached on ARM

• Fulmine cluster with 8 Cores, 256 KiB L1, 8 KiB I$
• RAB:

– L1 TLB: 4 + 32 slices
– L2 TLB: 1024 entries

• IOMMU [Kornaros et al., SoC’14]:
– 64-entry IOTLB, 6 cycles look-up latency

Results: FPGA Resource Utilization

Block Slice LUTs [K] Slice Regs [K] Block RAM [Kb]

PULP Cluster 120 56 2163

L1 TLBs 6.6 4.7 0

L2 TLB 0.3 0.1 45

Buffer & Control 1.8 2.7 0

RAB Total 8.7 7.5 45

IOMMU [1] 11.15 407.65

• ARM @ 333 MHz, PULP @ 50 MHz, DDR @ 300 MHz
• RAB could be clocked at @ 100 MHz, peak bandwidth to shared

memory of 6.4 Gbps
• FIFO replacement strategy for RAB management

Platform Details

• Average RAB miss handling time ~5500 cycles
• RAB miss handler

– Not optimized to host architecture, fully portable
– Page table walker not executable in interrupt context
– Use of Concurrency Managed Workqueue API of Linux

• Cost Breakdown:
– 20% until host starts to handle the interrupt = schedule work (7)
– 50% until the worker thread starts to handle the miss (8)
– 30% actual miss handling

• 23% get_user_pages()

RAB Miss Handling: Cost Breakdown Analysis

