

The importance of memory in the next generation of real-time systems

Paolo Burgio paolo.burgio@unimore.it

Industry 4.0

Cities

Machine to

Machine

Smarter Planet

Cyber-Physical

Internet of Things

Industrial Internet

Systems

The four horsemen

- **1.** Heavy workloads
 - Sensor-fusion and image-processing

2. Reduced power consumption

- Smaller batteries and renewable power sources
- **3. Quickly interact** with the environment
 - Prompt elaboration of sensor data
 - Run highest criticality workloads
 - Replacing safety-critical human activities

Artificial intelligence

IWES @Rome, September 8, 2017

Internet-of-Things

Cyber-physical systems

2

Health and medicine

Autonomous driving

4.

©2017 Universit

Multi- and many-core platforms are the solution for 1-2(-3)

- Climbing "the power wall"
- High Performance @ poor Watts

Real-Time system: produce result in a guaranteed/bounded amount of time

- ✓ By construction
- ✓ Application fields: automotive, avionics, industry, medical...

The keyword: predictability

- Provide the correct result....when expected
- ✓ The system must be simple to analyze

Real-Time systems – traditional approach

Scheduling (also, mapping)

Architectural bottlenecks

- ✓ Shared memory banks
- ✓ Caches (\$)

✓ I/Os

Beyond traditional tecnhiques

- 1. More parameters
 - Shared resources (e.g., memory, SSDs, IOs, caches..)
 - The complexity of analysis grows exponentially w/number of cores
- 2. Mem accesses: instead of thin lines, big bars
 - The mostly accessed resource in the system
 - Traditional techniques are too conservative (bounds too high)

- Thousands cores arranged in CLUSTERS
- Host-accelerator architecture (e.g., GP-GPUs) \checkmark
- ..even worse! \checkmark

Knowledge of the platform is power

Two motivating examples

- Both from real systems
- 1. Many-core accelerator-based platforms
 - Quad-/Octa-core as host
 - Integrated GPU iGPU of FPGA
 - Powerful enough to run neural networks
- 2. Reference industrial system
 - Multi-core ARM
 - Multi-OS (embedded Linux + Win for UI)
 - Hypervisor-based

Testbed #1: "automotive" platforms

Qualitatively analyze and characterize the conflicts due to parallel accesses to main memory by both CPU cores and iGPU

- 1. NVIDIA Tegra K1 w/Kepler GPU
- 2. NVIDIA Tegra X1 w/Maxwell GPU
- 3. NVIDIA Tegra X2 w/Parker GPU automotive-grade
- 4. Intel i7-6700 w/intel GPU
- 5. Xilinx Zynq Ultrascale multi-core + FPGA (+GPU)

HERCULES

Roberto Cavicchioli, Nicola Capodieci and Marko Bertogna, "Memory Interference Characterization between CPU cores and integrated GPUs in Mixed-Criticality Platforms", 22nd IEEE International Conference on Emerging Technologies And Factory Automation

- ✓ Shared memory between CPU/GPU complex
 - "Unified Virtual Memory"
 - Unlike traditional "discrete" GPU systems

Notable contention points

- Last-generation FPGA-based heterogeneous SoC
 - FPGA = (re-)programmability
- ✓ ARM A53 Quad-core as host "PS"
- ✓ FPGA as accelerator "PL"

Notable contention points (1)

Test 'A' - Xilinx Zynq

A1 - Sequential read, sequential interference Latency [ns] Cache limit Alone Interf 1 Interf 2 Interf 3 WSS [B]

- ✓ Interfere with prefetching mechanism
- ✓ Interfering cores read at increasing strided addresses

Testbed #2: industrial platform

19

- ✓ NXP iMX6 from Egicon
 - Components for F1 teams, industrial telescopic arms
 - Credits to Francesco Bellei

System Control			Connectivity		
Secure JTAG	CPU Platform ARM [®] Cortex™-A9 Core		MMC 4.4/	USB2 HSIC	
PLL, Osc.	32 KB I-Cache	32 KB I-Cache 32 KB D-Cache		Host x2	
Clock and Reset	per Core	per Core	MMC 4.4/	MIPI HSI	
Smart DMA	NEON per Core PTM per Core		UART x5,	S/PDIF Tx/Rx	
IOMUX	256 KB-1 MB L2-Cache		5 Mbps		
Timer x3	Multimedia Hardware Graphics Accelerators		I ² C x3,	(1-Lane)	
PWM x4	3D	Vector Graphics	SPIXS	FlexCAN x2	
Watch Dog x2	2D		ESAI, I2S/SSI	MLB150 + DTCP	
Power Management	Video Codecs	Audio			
Power Temperature	1080p30 Enc/Dec ;	ASRC	3.3V GPIO	1 Gb Ethernet + IEEE® 1588	
Supplies	Imaging Processing Unit		Keypad	/pad	
ROM RAM	Resizing and Blending Image Enhancement Inversion/Rotation		S-ATA and PHY 3 Gbps	NAND Cntrl. (BCH40)	
Coounty	Display and Camera Interface		·····	LP-DDB2.	
RNG Security Cntrl.	HDMI and PHY 24-bit RGB, LVDS (x2)		USB2 OTG	DDR3/	
TrustZone Secure RTC	MIPI DSI	USB2 Host	x32/64,		
Ciphers eFuses	MIPI CSI2	EPDC	and PHY	533 MHz	
PWM x4 Watch Dog x2 Power Management Power Management Power Management Rower Management Rom ROM RNG Security Cntrl TrustZone Secure RTC Ciphers eFuses WES @Rome, September	Hardware Graphics 3D 2D Video Codecs 1080p30 Enc/Dec Imaging Proce Resizing and Blending In Inversion/Rotation Display and Came HDMI and PHY 24-I MIPI DSI MIPI CSI2	Hardware Graphics Accelerators 3D Vector Graphics 2D 2D Video Codecs Audio 1080p30 Enc/Dec AsRC Imaging Processing Unit AsRC Resizing and Blending Image Enhancement Inversion/Rotation Display and Camera Interface HDMI and PHY Video Codecs 24-bit RGB, LVDS (x2) MIPLOSI2 EPDC		FlexCAN x2 MLB150 + DTCP 1 Gb Etherne + IEEE® 1588 NAND Cntrl. (BCH40) LP-DDR2, DDR3/ LV-DDR3 x32/64, 533 MHz	

✓ More "traditional"

Memory latency - sequential (ns)

What do we do with this knowledge?

✓ A set of techniques to turn the view of the system that software has..

PREM - PRedictable Execution Models

- Group memory access at the beginning of every software task
- Co-schedule memory accesses and tasksto-cores
- Greatly reduces the complexity of the scheduling problem

...and increases performance

Up to 4x predictable performance on a many-core platform

# Cores/threads	1	2	4	8
No-PREM – Worst (Analytical)	0.026	0.047	0.088	0.170
PREM – Worst (Analytical)	0.010	0.014	0.022	0.038
Speedup	2.6×	3.4×	4.0×	4.5×

2015 paper

@ RTEST

Thank you!

Paolo Burgio paolo.burgio@unimore.it

http://hipert.unimore.it

Backup

- 1. One observed core reads sequentially within a variable sized working set, while other cores are interfering sequentially
- 2. One observed core reads randomly within a variable sized working set, while other cores are interfering sequentially
- 3. One observed core reads sequentially within a variable sized working set, while other cores are interfering randomly
- 4. One observed core reads randomly within a variable sized working set, while other cores are interfering randomly

- ✓ Shared memory between CPU/GPU complex
 - "Unified Virtual Memory"

- ✓ x86_64 powerful host + iGPU
 - Sharing L3\$, External DRAM...

Notable contention points (1)

Test case B – iGPU interference on CPU

- 1. One CPU core reads sequentially within a variable working set, while the GPU accesses memory according to different paradigms:
 - CUDA memcpy
 - CUDA memcpy on UVM
 - CUDA memcpy on pinned mem
 - CUDA memset (0)
- 2. Same, but CPU core reads randomly

- 1. CPU generates sequential interfering mem accesses, while GPU accesses memory according to different paradigms:
 - CUDA memcpy
 - CUDA memcpy on UVM
 - CUDA memcpy on pinned mem
 - CUDA memset (0)
- 2. Same, but CPU core interference is random

