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The four horsemen
1. Heavy workloads

– Sensor-fusion and image-processing

2. Reduced power consumption

– Smaller batteries and renewable power sources

3. Quickly interact with the environment

– Prompt elaboration of sensor data

4. Run highest criticality workloads

– Replacing safety-critical human activities

Future embedded systems

Artificial intelligence

Industry 4.0

Internet-of-Things

Autonomous

driving
Health and medicine

Cyber-physical

systems
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Multi- and many-core platforms are the solution for 1-2(-3)

✓ Climbing "the power wall"

✓ High Performance @ poor Watts

Real-Time system: produce result in a guaranteed/bounded amount of time

✓ By construction

✓ Application fields: automotive, avionics, industry, medical…

The keyword: predictability

✓ Provide the correct result.…when expected

✓ The system must be simple to analyze

Real-Time multi-core systems?
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Single-core, multiple tasks/applications

1. Analyze the system (HW/SW)

2. Derive a (mathematical?) model

3. Do some magic mathematics…

…guaranteed timing

bounds!

Optimal sharing of the core between task

✓ ..and guaranteed by construction

✓ Scheduling (also, mapping)

Real-Time systems – traditional approach
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Architectural bottlenecks

✓ Shared memory banks

✓ Caches ($)

✓ I/Os

Multi-core systems
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Beyond traditional tecnhiques

1. More parameters

– Shared resources (e.g., memory, SSDs, IOs, caches..) 

– The complexty of analysis grows exponentially w/number of 

cores

2. Mem accesses: instead of thin lines, big bars

– The mostly accessed resource in the system 

– Traditional techniques are too conservative (bounds too 

high)

It's (mainly) a memory issue!
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Thousands cores arranged in CLUSTERS✓

Host✓ -acccelerator architecture (e.g., GP-GPUs)

..even worse!✓

Many-core systems
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Two motivating examples

✓ Both from real systems

1. Many-core accelerator-based platforms

– Quad-/Octa-core as host

– Integrated GPU – iGPU  of FPGA

– Powerful enough to run neural networks

2. Reference industrial system

– Multi-core ARM

– Multi-OS (embedded Linux + Win for UI)

– Hypervisor-based

Knowledge of the platform is power
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Qualitatively analyze and characterize the conflicts due to parallel accesses to main memory by 

both CPU cores and iGPU

1. NVIDIA Tegra K1 w/Kepler GPU

2. NVIDIA Tegra X1 w/Maxwell GPU

3. NVIDIA Tegra X2 w/Parker GPU – automotive-grade 

4. Intel i7-6700 w/intel GPU

5. Xilinx Zynq Ultrascale multi-core + FPGA  (+GPU)

Testbed #1: "automotive" platforms

Roberto Cavicchioli, Nicola Capodieci and Marko Bertogna, "Memory Interference 

Characterization between CPU cores and integrated GPUs in Mixed-Criticality 

Platforms", 22nd IEEE International Conference on Emerging Technologies And 

Factory Automation
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✓ Shared memory between CPU/GPU complex

– "Unified Virtual Memory"

– Unlike traditional "discrete" GPU systems

Notable contention points

NVIDIA Tegra K2

1
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Test 'A' - Tegra X2 – A57
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✓ Last-generation FPGA-based heterogeneous SoC

– FPGA = (re-)programmability

✓ ARM A53 Quad-core as host "PS"

✓ FPGA as accelerator "PL"

Notable contention points

Xilinx Zynq Ultrascale

1
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Test 'A' - Xilinx Zynq
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Test 'B' - Tegra X2
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Test 'B' - Xilinx Ultrascale

IWES @Rome, September 8, 2017 15



©2017 University of Modena and Reggio Emilia

Test 'C' - Tegra X2 – A57
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Test 'C' - Xilinx Ultrascale

IWES @Rome, September 8, 2017 17



©2017 University of Modena and Reggio Emilia

✓ Interfere with prefetching mechanism

✓ Interfering cores read at increasing strided addresses

Prefetching
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NXP iMX✓ 6 from Egicon

Components for F– 1 teams, industrial telescopic arms

Credits to Francesco Bellei–

Testbed #2: industrial platform
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✓ More "traditional"

iMX6 mem hierarchy

Core 1

Cache L1

Cache L2

Core 2

Cache L1

Core 3

Cache L1

Core 4

Cache L1

Memoria (RAM)

fast fast fast fast

slow
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Memory latency - sequential (ns)
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Memory interference impact
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✓ A set of techniques to turn the view of the system that software has..

Single-core equivalence

CPU 0

Shared RAM

CPU 1

Shared $

CPU 0

RAM
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CPU 1

RAM

$

…into this

Cache coloring/ 

partitioning

Time Division 

Multiple Access

Multi-port mem

w/bank partitioning

From this…
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✓ Group memory access at the beginning of 

every software task

✓ Co-schedule memory accesses and tasks-

to-cores

✓ Greatly reduces the complexity of the 

scheduling problem

…and increases performance

Up to 4x predictable performance

on a many-core platform

PREM - PRedictable Execution Models
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1. One observed core reads sequentially within a variable sized working set, while other cores are 

interfering sequentially

2. One observed core reads randomly within a variable sized working set, while other cores are 

interfering sequentially

3. One observed core reads sequentially within a variable sized working set, while other cores are 

interfering randomly

4. One observed core reads randomly within a variable sized working set, while other cores are 

interfering randomly

Test case A – intra-CPU interference
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✓ Shared memory between CPU/GPU complex

– "Unified Virtual Memory"

Notable contention points

NVIDIA Tegra family

TK1 TX1/2

1
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Intel i7-6700 Skylake

✓ x86_64 powerful host + iGPU

– Sharing L3$, External DRAM…

Notable contention points 1
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Tegra X1
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Tegra X2 - Denver

IWES @Rome, September 8, 2017 32



©2017 University of Modena and Reggio Emilia

1. One CPU core reads sequentially within a variable working set, while the GPU accesses 

memory according to different paradigms:

– CUDA memcpy

– CUDA memcpy on UVM

– CUDA memcpy on pinned mem

– CUDA memset (0)

2. Same, but CPU core reads randomly

Test case B – iGPU interference on CPU
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Tegra X1
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1. CPU generates sequential interfering mem accesses, while GPU accesses memory according 

to different paradigms:

– CUDA memcpy

– CUDA memcpy on UVM

– CUDA memcpy on pinned mem

– CUDA memset (0)

2. Same, but CPU core interference is random

Test case C – CPU interference on iGPU
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Tegra X1
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Tegra X2 - Denver
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Test 'C' - Intel i7-6700
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