
Transparent Fault Tolerance Support in
Model-Based Design

Ivan Cibrario Bertolotti *, Tingting Hu **, Nicolas Navet **

* National Research Council of Italy – IEIIT, Torino, Italy
** University of Luxembourg – FSTC, Esch-sur-Alzette, Luxembourg

2nd Italian Workshop on Embedded Systems (IWES)
September 7 – 8, 2017, Rome, Italy

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 1 / 18

Outline

Overview and Motivation

Fault Tolerance Framework

Fault Injection Capabilities

Conclusion

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 2 / 18

Overview and Motivation

The CPAL Language

Cyber Physical Action Language

A high-level DSL to model, simulate, verify, and implement CPSs

It can express both functional and non-functional behaviors
It can be executed in real time on an embedded platform, by
means of an interpreter
Simulation and execution are timing equivalent
The language natively supports multiple periodic and/or
event-driven processes, each modeled by means of a
Mealy Finite State Machine (FSM)

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 3 / 18

Overview and Motivation

The CPAL Language

Sample Process

processdef P(params) {
common {

code
}

state Warning {
code

}
on (cond) {code} to Alarm_Mode;
after (time) if (cond) to Normal_Mode;

finally {
code

}
}

process P: inst[period,offset][cond](args);

@cpal:time:inst{
annotation code

}

Elementary execution step

Activation
Condition

Annotation code

Transition
condition?

Transition code

Move to new state

common code

State code

finally code

Continuation?

True

True

False

False

True

Sc
h

ed
u

le
r

P
ro

ce
ss

False

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 4 / 18

Overview and Motivation

Using CPAL

A “Real-World” Modeling Language

C-like syntax
Suitable as an implementation language
Schedulability analysis and timing-accurate simulation
Run-time introspection (e.g. for overload detection)

Goals

Use CPAL to model a communication protocol for fault
tolerance (interactive consistency)

Compare it with another prominent language (Promela)

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 5 / 18

Overview and Motivation

Using CPAL

A “Real-World” Modeling Language

C-like syntax
Suitable as an implementation language
Schedulability analysis and timing-accurate simulation
Run-time introspection (e.g. for overload detection)

Goals

Use CPAL to model a communication protocol for fault
tolerance (interactive consistency)

Compare it with another prominent language (Promela)

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 5 / 18

Overview and Motivation

CPAL vs. Promela — Main Remarks

Promela is meant for verification, rather than execution
Non-determinism is at the core of the language
No I/O support
No floating point data types
It can be translated to C and Java (with varying success)

CPAL supports timing-accurate simulation and
interpreted execution

Non-determinism must be avoided in most real systems
No formal proofs (except for schedulability analysis)
Executable model
The execution platform is decoupled from the application

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 6 / 18

Fault Tolerance Framework

Fault-Tolerant CPSs

As CPSs become more and more software intensive, software defects
tend to become the major source of faults

Fault tolerance enables a system to tolerate software faults after
its development
Few work is done on automatic fault tolerance analysis and
implementation at the system design phase

Goals

Improve system dependability . . .

. . . without affecting its functional behavior and timings

Full integration with MBD workflow

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 7 / 18

Fault Tolerance Framework

Fault-Tolerant CPSs

As CPSs become more and more software intensive, software defects
tend to become the major source of faults

Fault tolerance enables a system to tolerate software faults after
its development
Few work is done on automatic fault tolerance analysis and
implementation at the system design phase

Goals

Improve system dependability . . .

. . . without affecting its functional behavior and timings

Full integration with MBD workflow

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 7 / 18

Fault Tolerance Framework

Model-Based FT System Design/Development

Drive the
process of

By
Simul.

Guide the
selection

of

Analysis
Fault Tolerance

Mechanisms

Fault Models
Fault Injection

Techniques

Dependability
Quantifier

&
Analyzer

Code
Generation

Original
System
Models

Applied to

Derive

Code
transf.

Inject faults by code
transformation

Satisfied

Fa
il

ed

R
e-

se
le

ct
io

n
Original

System Models

Model Patched
with Suitable

Fault Tolerance
Mechanism

FT-enhanced
System Models

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 8 / 18

Fault Tolerance Framework

N-Version Programming (NVP)

N-fold replication of the same computation, carried out by means of N
software modules, called member versions (software diversity)

Member versions run in parallel, operating on the same inputs
Result reached by consensus (e.g. majority voting)
Requires member versions to generate comparison vectors at
predefined cross-check points
Feedback to the member versions depending on the
result (terminate/continue, recovery)

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 9 / 18

Fault Tolerance Framework

N-Version Programming (NVP)

N-fold replication of the same computation, carried out by means of N
software modules, called member versions (software diversity)

Member versions run in parallel, operating on the same inputs
Result reached by consensus (e.g. majority voting)
Requires member versions to generate comparison vectors at
predefined cross-check points
Feedback to the member versions depending on the
result (terminate/continue, recovery)

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 9 / 18

Fault Tolerance Framework

NVP Framework

Initiator

M1 M2 Mx…

Voter

C-Vector1 C-Vector2 C-Vectorn

status1 status2 statusn

Outputs from the original process

Inputs to the original process

User-provided
member versions

Framework
component

Based on software patterns,
automatic code-generation friendly,
cross-check points set at execution step boundaries

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 10 / 18

Fault Tolerance Framework

Main Achievements

Fault-tolerant mechanisms are kept independent from the logic of
the application
System designers may explore their use early in the design
phase, focusing only on the application-dependent functional logic
Minimal or no user involvement in low-level implementation details
A C-language implementation derived from the model is also
available (when direct model execution is impractical)

The same methodology can be applied to other fault
tolerant mechanisms

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 11 / 18

Fault Injection Capabilities

Software Fault Injection

Motivation
No fault tolerance framework can be considered complete without the

ability of injecting faults into the model

Very powerful, well-understood assessment technique
Time consuming, requires extensive know-how

Goals

Automate software fault injection

Integrate it with the design flow . . .

. . . by means of software patterns

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 12 / 18

Fault Injection Capabilities

Software Fault Injection

Motivation
No fault tolerance framework can be considered complete without the

ability of injecting faults into the model

Very powerful, well-understood assessment technique
Time consuming, requires extensive know-how

Goals

Automate software fault injection

Integrate it with the design flow . . .

. . . by means of software patterns

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 12 / 18

Fault Injection Capabilities

What Can We Model? — Fault Categories

Global State: State information resides in a pool of RAM statically
allocated at link time → Its corruption can model various kinds of
memory corruption
Activation Arguments: Processes access state information
through arguments, passed by value or by reference → Better
granularity (down to the process activation level)
Instance Variables: Local (stack-based) process storage is often
implemented differently than global storage → Support the
distinction between how different kinds of memory fail
Control Flow Disruption: Most details of control flow are
hidden in the model → Tampering with state transition
conditions provides a useful surrogate

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 13 / 18

Fault Injection Capabilities

How? — Injection Mechanisms and Patterns

External Injector: One or more processes are dedicated to fault
injection → Keeps a clean boundary between the normal behavior
of a system and its fault profile, centralized approach
Common/Finally Blocks: They are executed before and after
state-specific code upon process activation → They can also
access activation arguments and local variables, per-instance
behaviors are possible
Annotation-Based Injector: CPAL supports annotations to
express non-functional properties of a program and
isolate them from functional properties → With respect
to common/finally, they can also affect state transitions

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 14 / 18

Fault Injection Capabilities

Summary Table

Fault category

Mechanism
Global
state

Activation
arguments

Local
variables

Control
flow

External process(es) X X
Pre/post conditions X X X
Annotation-based X X

Results

Software fault injection of data errors can be effectively
performed at the DSL level

More limited modeling of code changes is possible, too

All patterns can be fully automated

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 15 / 18

Fault Injection Capabilities

Summary Table

Fault category

Mechanism
Global
state

Activation
arguments

Local
variables

Control
flow

External process(es) X X
Pre/post conditions X X X
Annotation-based X X

Results

Software fault injection of data errors can be effectively
performed at the DSL level

More limited modeling of code changes is possible, too

All patterns can be fully automated

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 15 / 18

Fault Injection Capabilities

Summary Table

Fault category

Mechanism
Global
state

Activation
arguments

Local
variables

Control
flow

External process(es) X X
Pre/post conditions X X X
Annotation-based X X

Results

Software fault injection of data errors can be effectively
performed at the DSL level

More limited modeling of code changes is possible, too

All patterns can be fully automated

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 15 / 18

Conclusion

Ongoing Work

Automatic code generation and instrumentation

Complete the implementation of the fault tolerance and
fault injection framework
Operate only at the DSL level, for modularity and
applicability to other languages
Design an appropriate annotation-based language
extension to this purpose
Consider further fault tolerance and injection
mechanisms

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 16 / 18

Conclusion

Further Reading

Nicolas Navet and Loïc Fejoz.
CPAL: High-level abstractions for safe embedded systems.
In Proc. of the ACM International Workshop on Domain-Specific Modeling (DSM), pages
35–41, October 2016.

Ivan Cibrario Bertolotti, Tingting Hu, and Nicolas Navet.
Model-based design languages: A case study.
In Proc. 13th IEEE International Workshop on Factory Communication Systems (WFCS),
pages 1–6, May 2017.

Nicolas Navet, Ivan Cibrario Bertolotti, and Tingting Hu.
Software patterns for fault injection in CPS engineering.
In Proc. 22nd IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), pages 1–6, September 2017 (to appear).

Tingting Hu, Ivan Cibrario Bertolotti, and Nicolas Navet.
Towards seamless integration of N-Version Programming in model-based design.
In Proc. 22nd IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), pages 1–8, September 2017 (to appear).

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 17 / 18

Thank You

THANK YOU FOR YOUR ATTENTION

Ivan Cibrario Bertolotti Fault Tolerance Support in MBD IWES 2017 — (svn rev. 347) 18 / 18

	Overview and Motivation
	Fault Tolerance Framework
	Fault Injection Capabilities
	Conclusion

