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Overview and Motivation

The CPAL Language

Cyber Physical Action Language

A high-level DSL to model, simulate, verify, and implement CPSs

It can express both functional and non-functional behaviors
It can be executed in real time on an embedded platform, by
means of an interpreter
Simulation and execution are timing equivalent
The language natively supports multiple periodic and/or
event-driven processes, each modeled by means of a
Mealy Finite State Machine (FSM)
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Overview and Motivation

The CPAL Language

Sample Process

processdef P(params) {
common {

code
}

state Warning {
code

}
on (cond) {code} to Alarm_Mode;
after (time) if (cond) to Normal_Mode;

finally {
code

}
}

process P: inst[period,offset][cond](args);

@cpal:time:inst{
annotation code

}
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Overview and Motivation

Using CPAL

A “Real-World” Modeling Language

C-like syntax
Suitable as an implementation language
Schedulability analysis and timing-accurate simulation
Run-time introspection (e.g. for overload detection)

Goals

Use CPAL to model a communication protocol for fault
tolerance (interactive consistency)

Compare it with another prominent language (Promela)
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Overview and Motivation

CPAL vs. Promela — Main Remarks

Promela is meant for verification, rather than execution
Non-determinism is at the core of the language
No I/O support
No floating point data types
It can be translated to C and Java (with varying success)

CPAL supports timing-accurate simulation and
interpreted execution

Non-determinism must be avoided in most real systems
No formal proofs (except for schedulability analysis)
Executable model
The execution platform is decoupled from the application
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Fault Tolerance Framework

Fault-Tolerant CPSs

As CPSs become more and more software intensive, software defects
tend to become the major source of faults

Fault tolerance enables a system to tolerate software faults after
its development
Few work is done on automatic fault tolerance analysis and
implementation at the system design phase

Goals

Improve system dependability . . .

. . . without affecting its functional behavior and timings

Full integration with MBD workflow
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Fault Tolerance Framework
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Fault Tolerance Framework

N-Version Programming (NVP)

N-fold replication of the same computation, carried out by means of N
software modules, called member versions (software diversity)

Member versions run in parallel, operating on the same inputs
Result reached by consensus (e.g. majority voting)
Requires member versions to generate comparison vectors at
predefined cross-check points
Feedback to the member versions depending on the
result (terminate/continue, recovery)
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Fault Tolerance Framework

NVP Framework

Initiator
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Based on software patterns,
automatic code-generation friendly,
cross-check points set at execution step boundaries
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Fault Tolerance Framework

Main Achievements

Fault-tolerant mechanisms are kept independent from the logic of
the application
System designers may explore their use early in the design
phase, focusing only on the application-dependent functional logic
Minimal or no user involvement in low-level implementation details
A C-language implementation derived from the model is also
available (when direct model execution is impractical)

The same methodology can be applied to other fault
tolerant mechanisms
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Fault Injection Capabilities

Software Fault Injection

Motivation
No fault tolerance framework can be considered complete without the

ability of injecting faults into the model

Very powerful, well-understood assessment technique
Time consuming, requires extensive know-how

Goals

Automate software fault injection

Integrate it with the design flow . . .

. . . by means of software patterns
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Fault Injection Capabilities

What Can We Model? — Fault Categories

Global State: State information resides in a pool of RAM statically
allocated at link time → Its corruption can model various kinds of
memory corruption
Activation Arguments: Processes access state information
through arguments, passed by value or by reference → Better
granularity (down to the process activation level)
Instance Variables: Local (stack-based) process storage is often
implemented differently than global storage → Support the
distinction between how different kinds of memory fail
Control Flow Disruption: Most details of control flow are
hidden in the model → Tampering with state transition
conditions provides a useful surrogate
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Fault Injection Capabilities

How? — Injection Mechanisms and Patterns

External Injector: One or more processes are dedicated to fault
injection → Keeps a clean boundary between the normal behavior
of a system and its fault profile, centralized approach
Common/Finally Blocks: They are executed before and after
state-specific code upon process activation → They can also
access activation arguments and local variables, per-instance
behaviors are possible
Annotation-Based Injector: CPAL supports annotations to
express non-functional properties of a program and
isolate them from functional properties → With respect
to common/finally, they can also affect state transitions
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Fault Injection Capabilities

Summary Table

Fault category

Mechanism
Global
state

Activation
arguments

Local
variables

Control
flow

External process(es) X X
Pre/post conditions X X X
Annotation-based X X

Results

Software fault injection of data errors can be effectively
performed at the DSL level

More limited modeling of code changes is possible, too

All patterns can be fully automated
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Conclusion

Ongoing Work

Automatic code generation and instrumentation

Complete the implementation of the fault tolerance and
fault injection framework
Operate only at the DSL level, for modularity and
applicability to other languages
Design an appropriate annotation-based language
extension to this purpose
Consider further fault tolerance and injection
mechanisms
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Conclusion
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