
A model-based monitoring approach for 
safety-critical cyber-physical systems
Federico Aromolo, Cosimo Antonio Prete, Pierfrancesco Foglia, Gabriele Antonio De Vitis

Department of Information Engineering – University of Pisa, Italy

IWES 2017 – 2nd Italian Workshop on Embedded Systems

Computer Science Department – Sapienza University of Rome, Italy

September 7-8, 2017



Motivations

• The continuous technological advancements in the domain of cyber-
physical systems allow designers to devise highly integrated systems 
of increasing complexity exhibiting intelligent and adaptive behaviors

• These systems are able to replace the humans-in-the-loop 
component to integrate higher-level logic in real-time control
• E.g., autonomous vehicles, industrial automation, medical systems, …

• Operation in open and constantly changing environments

• Safety is one of the key concerns in the development of such systems
• Requires increased development and verification efforts



Motivations

• The concept of functional safety 
was introduced to deal with the 
impossibility of complete system 
testing, while providing safety 
guarantees in the development of 
critical systems

• Based on a quantitative measure of 
dependability
• E.g., probability of failure per hour

• Iterative refinement procedure 
based on the application of well-
known techniques

IEC 61508

IEC 61800-5-2
Electrical 

Drives

ISO 26262 
Automotive

IEC 62061 
Machinery

IEC 50156 
Furnaces

IEC 61511 
Process 
industry

EN 60601 
Medical 
devices

EN 50128 
Railway 

applications

IEC 61513 
Nuclear 
sector



Motivations

Safety functions are typically expressed in 
qualitative or quantitative terms concerning 
high level behaviors

Most of the standardized techniques for 
functional safety rely on low level solutions, 
aimed at the reduction of the probability of 
safety requirements violation due to 
random failures in the hardware 

Systematic faults

Random faults



Background

• Functional safety
• Model-based systems engineering
• Formal verification

• Model checking

• Runtime verification
• Simulation
• PLC design and implementation for industrial systems
• Supervisory control theory and its derivatives

• Supervisor synthesis for discrete control systems

• Model-predictive control
• Autonomous guided vehicles and multi-agent systems



Objectives

• Improve system reliability with online simulation-based system 
monitoring in the context of a strongly automated development 
environment
• Verification of behavioral consistency with respect to the models used for 

code generation and implementation
• Verification of safety properties at a high level of abstraction
• Intercept both random and systematic faults by analyzing high-level and 

system-level behaviors
• E.g., erroneous subsystem interaction, faulty actuator or sensor, software bug

• Used for both static and runtime system-level verification

• Analyze the possible applications of predictive monitoring approaches 
for advanced control schemes



Simulation-based monitoring approach

Observer interface

Control override 
interface

Formal safety 
requirements

Tracer

Target system

Plant

Controller

Simulator

Compare behavior
Verify requirements

Recovery 
actions control

Executable 
system model

Monitoring system

System status



Simulation-based monitoring approach

• At each time step:
1. Extract the target system states and variables

2. Initialize a simulation instance with the observed state as initial conditions

3. Perform one or more simulation steps of an executable system model

4. Compare the expected behavior with the actual system behavior and verify 
safety properties

5. If necessary, perform a recovery action
• E.g. modify control parameters, perform an emergency stop, notify the operator

6. Store execution trace and logging data



Overview of the general development process

Target system specification
and design

Target system model (source 
modeling language) Formal safety requirements

Target system model 
(target language)

Model 
transformation

Monitoring system 
control logic

template

Instrumented target system 
model

Add monitoring 
interfaces

Instrumented target 
system code

Monitoring algorithm

Monitoring program

Monitoring 
code generation

Parsing

Integration

Subsystem code 
generation



Development process instantiation: IEC 61499

• IEC 61499 is a standard for PLC systems engineering which is widely 
adopted in the industrial field
• Support for distributed discrete-event control systems

• The proposed approach can be easily adapted for use with IEC 61499
• Fitting model of computation

• Support for Execution Control Charts (ECC), closely related to finite automata

• Manages synchronization, concurrency and event dispatching between subsystems

• Automated integration and implementation phases

• Support for custom-coded modules

• Can be complemented with supervisor synthesis and traditional reliability 
techniques



IEC 61499 development workflow

Target system specification
and design

Target system model
(Simulink Stateflow, SysML finite 

automata)

Formal safety requirements
(state- or event-based, range checks)

Target system model 
(IEC 61499 ECC)

Model 
transformation

Monitor Function 
Block ECC template

Target system function 
block network

Instrumented target system 
function block network

Add monitoring 
interfaces

Monitored function block 
network

Monitoring algorithm 
(C, Java)

Monitoring system function 
block

Monitoring 
code generation

Parsing

Function block mapping 

and realization



Example: the Small Factory extended process

• Two locally-controlled machines:
• M1 takes a workpiece from an infinite 

input bin and puts it into the buffer after 
performing its work

• M2 takes a workpiece from the buffer 
and places it into an infinite output bin 
after performing its work

• Both M1 and M2 can break down while 
performing their work, and can be 
repaired

• Can be generalized to n machines

• Transformed into ECC models controllable event
uncontrollable event



Example: specifications

• The buffer has one slot, and it must 
not overflow nor underflow

• If M2 is broken down, M1 cannot start 
a work cycle and, if M1 is also broken 
down, M2 has to be repaired before 
M1
• A simple supervisor for these 

specifications is given by the parallel 
composition of the two automata

controllable event
uncontrollable event



Example: machine function blocks (ECC)



Example: supervisor synthesis (ECC)

State transitions set 
the control flags 
according to the 
specifications



Example: monitor block (ECC + custom code)

Invocation of a 
custom Java module 
for simulation at 
each event trigger



Example: monitored system (FB network)



Future works and challenges

• Complete the IEC 61499 instantiation
• Extend the support to well-known formal specification languages

• E.g. linear temporal logic for quantitative safety properties

• Remove the dependency from the specific RTSS
• Use of fixed execution semantics

• Performance and safety evaluation
• Known functional safety analysis techniques for IEC 61499

• Experiment with continuous systems
• Time model and synchronization, sampling, parameters selection, …

• Extend the monitoring system to support predictive monitoring
• Advanced simulation and control techniques
• Predictive simulations based on a number of possible future scenarios


